Volume 35, Issue 12 (12-2024)                   Studies in Medical Sciences 2024, 35(12): 994-1004 | Back to browse issues page

Ethics code: IR.IAU.PS.REC.1398.253


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Poua S, Mohammadi M. EVALUATION OF HYBRID PLASMONIC NANOCARRIERS AND SEA CUCUMBER ANTICANCER COMPOUNDS IN CANCER TREATMENT. Studies in Medical Sciences 2024; 35 (12) :994-1004
URL: http://umj.umsu.ac.ir/article-1-6349-en.html
Assistant Professor, Department of Biology, Faculty of Basic Sciences, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran (Corresponding Author) , mh_mohamadi@yahoo.com
Abstract:   (476 Views)
Background & Aims: Sea cucumbers belong to the phylum Echinodermata and have applications in fisheries, food, pharmaceuticals, and medical industries. Additionally, the use of metal nanoparticles in drug delivery systems (nanodrugs) has contributed to innovations in dosage forms by improving therapeutic effects and physicochemical properties over the past several years. The aim of this study is to investigate and compare the cytotoxic activity of the alcoholic extract of the sea cucumber species Holothuria leocuspilota, based on its bioactive compounds, and to evaluate the effectiveness of plasmonic hybrid nanocarriers at different doses in treating colon cancer.
Materials & Methods: This study was conducted in vitro. Samples were collected from the intertidal zone of Lark Island in 2018, transferred to plastic containers containing seawater, and analyzed for their anticancer effects. The extract, obtained using methanol as a solvent, was tested alongside gold nanoparticles against the colon cancer cell line (HCT116).
Results: Toxicity assessments conducted at 24, 48, and 72 hours revealed that cytotoxic effects increased proportionally with both extract and nanoparticle concentration, as well as with the duration of exposure. The best result was observed after 72 hours at a concentration of 500 micrograms of extract and 9 nanograms of nanoparticles. The IC50 value recorded during this period was 125 micrograms/ml.
Conclusion: Due to the significant cytotoxicity of the methanol extract against the cancer cell line, these compounds hold potential as viable candidates for anticancer drug development following further purification. Additionally, the plasmonic hybrid nanocarrier, which has demonstrated remarkable anticancer properties, could be extensively utilized in medical and pharmaceutical applications.
Full-Text [PDF 482 kb]   (79 Downloads)    
Type of Study: Research | Subject: فارماکولوژی

References
1. National report on registration of cancer cases. Ministry of Health, Treatment and Medical Education. Health Deputy. Disease Management Center. Non-infectious deputy. Cancer Department 2006. [URL:]
2. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2017;67: 7-30. https: //doi.org/10.3322/caac.21387 [DOI:10.3322/caac.21387] [PMID]
3. Mahmoud Lou R, Hosseinzadeh P, Hosseini F, Houshmand L. Evaluation of the relationship between hematological markers and thyroid cancer in patients with thyroid mass. UMSU Med J 2025;35(11): 873-81. [DOI:10.61186/umj.35.11.873]
4. Silva AC, Hara AK, Leighton JA, Heppell TP. CT colonography with intravenous contrast material: varied appearances of colonorectl carcinoma. Radiographics 2017;67: 7-30. [google scholar]
5. Song L, Li Y. SEPT9: A specific circulating biomarker for colorectal cancer. Adv Clin Chem 2015;72: 171-204. https: //doi.org/10.1016/bs.acc.2015.07.004 [DOI:10.1016/bs.acc.2015.07.004] []
6. Lindequist U. Marine-Derived Pharmaceuticals - Challengs and Opportunities. Biomol Ther 2016;24(6): 561-71. doi: 10.4062/biomolther.2016.181 https: //doi.org/10.4062/biomolther.2016.181 [DOI:10.4062/biomolther.2016.181] [PMID] []
7. McElroy S. Beche-de-mer species of commercial value-an update. SPC Beche-de-mer Inf Bull 1990;2: 2-7. [google scholar]
8. Pawson L. Phylam Echinodermata. Zootaxa 2007;749-64. https: //doi.org/10.11646/zootaxa.1668.1.31 [DOI:10.11646/zootaxa.1668.1.31]
9. Bryan PJ, McClintock JB, Marion K, Watts SA, Hopkins TS. Feeding deterrence and chemical defense in echinoderm body wall tissues from the Northern gulf of mexico. Am Zool 1992;32: 100. [google scholar]
10. Susanto E, Suhaeli Fahmi A, Hosokawa M, Miyashita K. Variation in Lipid Components from 15 Species of Tropical and Temperate Seaweeds. Mar Drugs 2019;17(11): 630. https: //doi.org/10.3390/md17110630 [DOI:10.3390/md17110630] [PMID] []
11. Yaacob H, Kim K, Shahimi M, Aziz Z, Sahil S. Malaysian sea cucumber (Gamat): A prospect in health food and therapeutic. Proc Asian Food Technol Semin 1997. [URL:]
12. Fagbohun OF, Joseph JS, Oriyomi OV, Rupasinghe HPV. Saponins of North Atlantic Sea Cucumber: Chemistry, Health Benefits, and Future Prospectives. Mar Drugs 2023;21(5): 262. https: //doi.org/10.3390/md21050262 [DOI:10.3390/md21050262] [PMID] []
13. Tian F, Zhang X, Tong Y, Yi Y, Zhang S, Li L, et al. PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and antitumor activities in vitro and in vivo. Cancer Biol Ther 2005;4(8): 874-82. https: //doi.org/10.4161/cbt.4.8.1917 [DOI:10.4161/cbt.4.8.1917] [PMID]
14. Roginsky A, Singh B, Ding XZ, Collin P, Woodward C, Talamonti M, et al. Frondanol (R)-A5p from the Sea Cucumber, CucumariaFrondosa Induces Cell Cycle Arrest and Apoptosis in Pancreatic Cancer Cells. Pancreas 2004;29(4): 335. https: //doi.org/10.1097/00006676-200411000-00048 [DOI:10.1097/00006676-200411000-00048]
15. Zhou L, Gao N, Sun H, Xiao C, Yang L, et al. Effects of Native Fucosylated Glycosaminoglycan, Its Depolymerized Derivatives on Intrinsic Factor Xase, Coagulation, Thrombosis, and Hemorrhagic Risk. Coagul Fibrinolysis 2020;607. https: //doi.org/10.1055/s-0040-1708480 [DOI:10.1055/s-0040-1708480] [PMID]
16. Dharmaraj S, Sivaraman J. Partial characterization and anticancer activities of purified lycoprotein extracted from green seaweed Codium decorticatum. J Funct Foods 2016;25: 323-32. https: //doi.org/10.1016/j.jff.2016.06.010 [DOI:10.1016/j.jff.2016.06.010]
17. Silchenko AS, Stonik VA. Progress in the Studies of Triterpene Glycosides From Sea Cucumbers (Holothuroidea, Echinodermata) Between 2017 and 2021. Nat Prod Commun 2021. [PMID: 25920212]
18. Hamaguchi P, Geirsdottir M, Vrac A, Kristinsson H, Sveinsdottir H, et al. In vitro antioxidant and antihypertensive properties of Icelandic sea cucumber (Cucumaria frondosa). Inst Food Technol Annu Meet 2010;14: 56-61. [URL:]
19. Althunibat OY, Hashim R, Taher M, Daud JM, Ikeda MA, Zali B. In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species. Eur J Sci 2009;37(3): 376-87. [google scholar]
20. Chou MC, Lee YJ, Wang YT, Cheng SY. Cytotoxic and Anti-Inflammatory Triterpenoids in the Vines and Leaves of Momordica charantia. Int J Mol Sci 2022;23: 1071. https: //doi.org/10.3390/ijms23031071 [DOI:10.3390/ijms23031071] [PMID] []
21. San Miguel-Ruiz JE, Garcia-Arraras JE. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC Dev Biol 2007;7: 115. https: //doi.org/10.1186/1471-213X-7-115 [DOI:10.1186/1471-213X-7-115] [PMID] []
22. Li X, Li S, Liu J, Lin L, et al. A regular fucan sulfate from Stichopus herrmanni and its peroxide depolymerization: Structure and anticoagulant activity. Carbohydr Polym 2021;256: 117513. https: //doi.org/10.1016/j.carbpol.2020.117513 [DOI:10.1016/j.carbpol.2020.117513] [PMID]
23. Goad L, Garneau FX, Simard JL, ApSimon J, Girard M. Isolation of Δ9 (11) sterols from the sea cucumber psolus fabricii. Implications for holothurin biosynthesis. Tetrahedron Lett 1985;26(29): 3513-6. https: //doi.org/10.1016/S0040-4039(00)98678-7 [DOI:10.1016/S0040-4039(00)98678-7]
24. Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 2013;228: 596-613. https: //doi.org/10.1016/j.cej.2013.05.046 [DOI:10.1016/j.cej.2013.05.046]
25. Pritchard BP, Altarawy D, Didier B. New basis set exchange: An open, up-to-date resource for the molecular sciences community. J Chem Inf Model 2019;59(11): 4814-20. https: //doi.org/10.1021/acs.jcim.9b00725 [DOI:10.1021/acs.jcim.9b00725] [PMID]
26. Pal A. Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule. Mater Lett 2004;58(3-4): 529-34. https: //doi.org/10.1016/S0167-577X(03)00540-8 [DOI:10.1016/S0167-577X(03)00540-8]
27. Qian H, Sun W, Haung J, Fang S, Lv B, et al. Chem Eur J 2008;84: 80595-602.
28. Clark AM, Rowe FWE. Monograph Of Shallow Water Indo West Pacific Echinoderms. Trustees of the British Museum (Natural History). Pitman Press, London 1971: 124-46. [google scholar]
29. Khorramizadeh M, Falak R. Fundamentals and preliminary principles of cell culture techniques. 2018;49: 70-80. [URL:]
30. Ausubel FM. Current protocol in molecular biology. New York: Willy-Liss 1996: 1-14. [google scholar]
31. Freshney R. The culture environment: substrate, gas phase, medium and temperature. Culture of animal cells: a manual of basic technique. 1994: 71-101. [google scholar]
32. Kim SK, Himaya S. Triterpene glycosides from sea cucumbers and their biological activities. Adv Food Nutr Res 2012;65: 297. https: //doi.org/10.1016/B978-0-12-416003-3.00020-2 [DOI:10.1016/B978-0-12-416003-3.00020-2] [PMID]
33. Qomshezadeh GA, Saghi I. Nanotechnology Monthly 2008;1-83. [URL:]
34. Zarrabi MF, Safari Z, Akbarzadeh A. Preparation and biological, catalytic and medical applications of gold nanoparticles. New J Cell Mol Biotechnol 2013;4(13): 551-5. [google scholar]
35. Rafiei S. Investigating the effect of gold, silver and magnesium nanoparticles on foot-and-mouth disease virus in cell culture. Master's Thesis, Department of Microbiology, Shahid Chamran University, Ahvaz 2013. [google scholar]
36. Yang WS, Qi XR, Xu QZ, Yuan CH, Yi YH. A new sulfated triterpene glycoside from the sea cucumber Colochirus quadrangularis, and evaluation of its antifungal, antitumor and immunomodulatory activities. Bioorg Med Chem 2021;41: 1. https: //doi.org/10.1016/j.bmc.2021.116188 [DOI:10.1016/j.bmc.2021.116188] [PMID]
37. Han H, Xu QZ, Yi YH, Gong W, Jiao BH. Two new cytotoxic disulfated holostane glycosides from the sea cucumber Pentacta quadrangularis. Chem Biodivers 2010;7(1): 158-67. https: //doi.org/10.1002/cbdv.200800324 [DOI:10.1002/cbdv.200800324] [PMID]
38. Hossain Z, Sugawara T, Hirata T. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5. Oncol Rep 2013;29: 1251-7. https: //doi.org/10.3892/or.2013.2223 [DOI:10.3892/or.2013.2223] [PMID]
39. Sugawara T, Zaima N, Yamamoto A, Sakai S, Noguchi R, et al. Isolation of sphingoid bases of sea cucumber cerberosides and their cytotoxicity against human colon cancer cells. Biosci Biotechnol Biochem 2006;70(12): 2906-12. https: //doi.org/10.1271/bbb.60318 [DOI:10.1271/bbb.60318] [PMID]
40. Lima KM, Junior RFA, Araujo AA, Oliveira AL, L CS, et al. Environmentally compatible bioconjugated gold nanoparticles as efficient contrast agents for colorectal cancer cell imaging. Sens Actuators B Chem 2014;196: 306-13. https: //doi.org/10.1016/j.snb.2014.02.008 [DOI:10.1016/j.snb.2014.02.008]
41. Janic B, Brown SL, Neff R, Liu F, Mao G. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol Ther 2021;22(2): 124-35. https: //doi.org/10.1080/15384047.2020.1861923 [DOI:10.1080/15384047.2020.1861923] [PMID] []
42. Shawky SM, Bald D, Azzazy HM. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem 2010;43(13-14): 1163-8. https: //doi.org/10.1016/j.clinbiochem.2010.07.001 [DOI:10.1016/j.clinbiochem.2010.07.001] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb