Volume 34, Issue 12 (12-2023)                   Studies in Medical Sciences 2023, 34(12): 826-834 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghaddam-manesh M, Shahraki R, Hosseinzadegan S, Shahraki Salar Z. INVESTIGATING ANTIBACTERIAL EFFECT OF NEW MAGNETIC NANOPARTICLE AND [1,3]-DITHIINE DERIVATIVES AGAINST LACTOCOCCUS GARVIEAE. Studies in Medical Sciences 2023; 34 (12) :826-834
URL: http://umj.umsu.ac.ir/article-1-5203-en.html
PhD of Organic Chemistry, Petrochemical and Polymer Research Group, Chemical and Petrochemical Research Institute, Standard Research Institute, Karaj, Iran (Corresponding Author) , mrm.manesh@gmail.com
Abstract:   (1593 Views)
Background & Aims: Loctococcus garvieae is a common bacterium between humans and animals, and it causes various diseases such as lactococcosis in aquatic animals. The [1,3]-Dithiine with two sulfur atoms in its structure is found in natural compounds such as garlic. Due to the antimicrobial activity of the [1,3]-Dithiine derivatives, and magnetic nanoparticles, in this study, antibacterial effects of the derivatives of this compound against Loctococcus garvieae were evaluated.
Materials & Methods: Six derivatives of [1,3]-Dithiine and a magnetic nanoparticles containing [1,3]-Dithiine were synthesized and antibacterial activity against Loctococcus garvieae were evaluated. Antimicrobial property was assessed using the CLSI (Clinical & Laboratory Standards Institut) standard and compared with gentamicin as a commercial drug.
Results: Synthetic derivatives of [1,3]-Dithiine and magnetic nanoparticles showed acceptable antibacterial effects based on IZD (inhibition zone diameter), MIC (minimum inhibitory concentration), and MBC (minimum bactericidal concentration) with a range of 32-2048 μg/ml.
Conclusion: In the study of antibacterial activity, a direct and significant relationship between the structure of compounds and antibacterial activity was observed.
Full-Text [PDF 895 kb]   (619 Downloads)    
Type of Study: Research | Subject: General

References
1. Shahrani M, Raissy M, Tajbakhsh E. Study of frequency and antimicrobial resistance of Lactococcus garvieae in rainbow trout fish in Chaharmahal va Bakhtiari Province. J Microbl Biol 2014;11:71-8. (Persian) [Google Scholar]
2. Wang CY, Shie HS, Chen SC, Huang JP, Hsieh IC, Wen MS, et al. Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract 2007;61(1):68-73. [DOI:10.1111/j.1742-1241.2006.00855.x] [PMID]
3. Rantsiou K, Urso R, Iacumin L, Cantoni C, Cattaneo P. Culture-dependent and independent methods to investigate the microbial ecology of Italian fermented sausages. Appl Environ Microbio 2005;71(4):1977-86. [DOI:10.1128/AEM.71.4.1977-1986.2005] [PMID] []
4. Ravelo C, Magarin˜os B, Lo'pezRomalde S, Toranzo AE, Romalde JL. Molecular fingerprinting of fish-pathogenic Lactococcus garvieae strains by random amplified polymorphic DNA analysis. J Clin Microbiol 2003;41(2):751-6. [DOI:10.1128/JCM.41.2.751-756.2003] [PMID] []
5. Carvalho MG, Vianni MC, Elliot JA, Reeves M, Facklam RR. Molecular analysisof Lactococcus garvieae and Enterococcus gallinarum isolated from water buffalos with subclinical mastitis. Adv Exp Med Biol1997;418:401-4. [DOI:10.1007/978-1-4899-1825-3_96] [PMID]
6. Deveriese LA, Hommez J, Laevens H, Ban adme P, Haesebrouck F. Identificationof aesculinhydrolyzing streptococci and enterococci from subclinical intramammaryinfections in dairy cows. Vet Microbiol 1999;70(1-2):87-94 [DOI:10.1016/S0378-1135(99)00124-8] [PMID]
7. Nateq Golestan M, Abbasi MR, Rakhshandeh H, Taghavizadeh Yazd ME. Facile fabrication and characterization of silver nanoparticles by sunn pest (Eurygaster integriceps puton) damaged wheat and evaluation of its antibacterial and cellular toxicity toward liver cancer cell lines. Stud Med Sci 2024;34(10):586-97. [Google Scholar]
8. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and Properties of Nanocrystals of Different Shapes. Chem Rev 2005;105:1102-25 [DOI:10.1021/cr030063a] [PMID]
9. Hu J, Odom TW, Lieber CM. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Acc. Chem. Res. 1999; 32: 435-44. [DOI:10.1021/ar9700365]
10. Sokolova V, Epple M. Inorganic Nanoparticles as Carriers of Nucleic Acids into Cells, Angew. Chem Int Ed 2008;47:1382-95. [DOI:10.1002/anie.200703039] [PMID]
11. Hashmi ASK, Hutchings GJ. Gold Catalysis. Angew. Chem. Int. Ed. 2006; 45: 7896-7936. [DOI:10.1002/anie.200602454] [PMID]
12. Gharehaghaji N, Divband B, Atashi Z. Analytical study of effect of bilayer inorganic and organic coating around the iron oxide nanoparticles on magnetic resonance imaging contrast. Stud Med Sci 2019;30(8):597-608. [Google Scholar]
13. Moghaddas Kia E, Alizadeh M, Vardast MR, Rezazad M. Synthesis of cholestrol grafted moleculary impriated polymer by means of the silanation of magnetic particles and evalution of functional characteristics. Stud Med Sci 2016;27(3):231-9. [Google Scholar]
14. Sajjadifar S, Gheisarzadeh Z. Isatin‐SO3H coated on amino propyl modified magnetic nanoparticles (Fe3O4@APTES@isatin‐SO3H) as a recyclable magnetic nanoparticle for the simple and rapid synthesis of pyrano[2,3‐d] pyrimidines derivatives. Appl Organomet Chem 2019;4602-33. [DOI:10.1002/aoc.4602]
15. Tamoradi T, Ghadermazi M, Ghorbani-Choghamarani A. Ni(II)-Adenine complex coated Fe3O4 nanoparticles as high reusable nanocatalyst for the synthesis of polyhydroquinoline derivatives and oxidation reactions. Appl Organometal Chem 2018;32: e3974. [DOI:10.1002/aoc.3974]
16. Rahdar A, Ghasemi B, Hashemi SH, Moghaddam-Manesh MR. Antibacterial Effect of New Compounds Against Lactococcus Garvieae. J Adv Biomed Sci 2019;9(3):1605-12. [Google Scholar]
17. Moghaddam-Manesh M, Ghazanfari D, Sheikhhosseini E. Akhgar M. Synthesis of bioactive magnetic nanoparticles spiro[indoline-3,40-[1,3]dithiine]@Ni (NO3)2 supported on Fe3O4@SiO2@CPS as reusable nanocatalyst for the synthesis of functionalized 3,4 dihydro-2H-pyran. Appl Organometal Chem 2020;e5543 [DOI:10.1002/aoc.5543]
18. Moghaddam-Manesh M, Sheikhhosseini E, Ghazanfari D, Akhgar M. Synthesis of novel 2-oxospiro[indoline-3,4′-[1,3]dithiine]-5′-carbonitrile derivatives by new spiro[indoline-3,4′-[1,3]dithiine]@Cu(NO3)2 supported on Fe3O4@gly@CE MNPs as efficient catalyst and evaluation of biological activity. Bioorg Chem 2020;98:103751. [DOI:10.1016/j.bioorg.2020.103751] [PMID]
19. Mehrabi H, Esfandiarpour Z, Davodian T. The reaction of active methylene compounds with carbon disulfide in the presence of arylidenemalononitriles: synthesis of 6-amino-2-(4,4-dimethyl/dihydro-2,6-dioxocyclohexylidene)-4-aryl-4H-1,3-dithiine-5-carbonitrile derivatives. J Sulfur Chem 2018;39:164-72. [DOI:10.1080/17415993.2017.1405959]
20. Yamashita M, Tahara T, Hayakawa S, Matsumoto H, Wada S, Tomioka K, Iida A. Synthesis and biological evaluation of histone deacetylase and DNA topoisomerase II-Targeted inhibitors. Bioorg Med Chem 2018;26:1920-8. [DOI:10.1016/j.bmc.2018.02.042] [PMID]
21. DeMartino JK, Hwang I, Connelly S, Wilson IA, Boger DL. Discovery of a potent, nonpolyglutamatable inhibitor of glycinamide ribonucleotide transformylase. J Med Chem 2008;51:5441-8. [DOI:10.1021/jm800555h] [PMID] []
22. Ghasemi B, Beyzaei H, Moghaddam-manesh M. Study of antibacterial effect of new thiazole, thiazolidine, imidazole, tetrahydropyrimidine, oxazolidine and thiazepine derivatives against Enterococcus faecalis. Yafte 2016;18(3):68-77. (Persian) [Google Scholar]
23. Moghaddam-manesh M, Hosseinzadegan S, Beyzaei H. Evaluation of antioxidant and antifungal properties of new derivatives of perazolo [3,4-d]pyrimidine. Stud Med Sci 2019;30(3):163-73. [URL]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb