Volume 34, Issue 10 (January 2023)                   Studies in Medical Sciences 2023, 34(10): 586-597 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nateq Golestan M, Abbasi M R, Rakhshandeh H, Taghavizadeh Yazdi M E. Facile fabrication and characterization of silver nanoparticles by sunn pest (Eurygaster integriceps puton) damaged wheat and evaluation of its antibacterial and cellular toxicity toward liver cancer cell lines. Studies in Medical Sciences 2023; 34 (10) :586-597
URL: http://umj.umsu.ac.ir/article-1-6077-en.html
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (Corresponding Author) , metyazdi@gmail.com
Abstract:   (1270 Views)
Background & Aims: Silver nanoparticles (AgNPs) are among the most explored nanomaterials and are widely employed in medical, pharmaceutical, and bioengineering application. The aim of this study was to investigate the antibacterial and cell toxicity effects of fabricated AgNPs by green method at room temperature.
Materials & Methods: In this work, AgNPs were fabricated by green method, which uses the seed extract of Triticum aestivum damaged by sunn pest (Eurygaster integriceps Puton) (SPDSPDWAgNPs) at room temperature. Powder X-ray Diffraction (PXRD) and Transmission Electron Microscopy (TEM) were used for characterization of synthesized nanoparticles. Disk diffusion method and MTT analysis were used for antibacterial and cell toxicity effects, respectively.
Results: The synthesis of SPDSPDWAgNPs was relevant by color change of solution, turning from light-yellow to dark-brown, respectively. α-glycosidase, protease and α-amylase are some identified enzymes of salivary glands of sunn pest which can affect the synthesis of nanoparticles. The results showed that SPDSPDWAgNPs have spherical shapes and had a different range from 1 to 25 nm. Moreover, the biosynthesized SPDSPDWAgNPs have high antibacterial properties toward the most common inflectional bacteria. Furthermore, the cytotoxicity results show the fabricated SPDSPDWAgNPs prevent the growth of cancer cells.
Conclusion: We concluded that this production manner of nanoparticles could be employed for large-scale synthesis of AgNPs, pharmaceutical, and antiseptic uses.
Full-Text [PDF 2217 kb]   (645 Downloads) |   |   Full-Text (HTML)  (134 Views)  
Type of Study: Research | Subject: میکروبیولوژی

References
1. Taghavizadeh Yazdi ME, Qayoomian M, Beigoli S, Boskabady MH. Recent Advances in Nanoparticles Applications in Respiratory Disorders, a Review. Front Pharmacol 2023;14:1059343. [DOI:10.3389/fphar.2023.1059343] [PMID] []
2. Shariatzadeh SMA, Soleimani Mehranjani M, Solgi F, Maleki P. Stereological Study Of The Protective Effect Of Alpha-Lipoic Acid On The Testis Tissue After Treatment With Silver Nanoparticles In The Nmri Mouse. Stud Med Sci 2021;31(12):944-55. http://umj.umsu.ac.ir/article-1-5036-en.html [Google Scholar]
3. Ke M, Qu Q, Peijnenburg W, Li X, Zhang M, Zhang Z, et al. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Sci Total Environ 2018;644:1070-9. [DOI:10.1016/j.scitotenv.2018.07.061] [PMID]
4. Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver Nanoparticles and Their Therapeutic Applications in Endodontics: A Narrative Review. Pharmaceutics 2023;15(3):715. [DOI:10.3390/pharmaceutics15030715] [PMID] []
5. Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms 2023;11(3):629. [DOI:10.3390/microorganisms11030629] [PMID] []
6. Yazdi MET, Nourbakhsh F, Mashreghi M, Mousavi SH. Ultrasound-based synthesis of ZnO· Ag 2 O 3 nanocomposite: characterization and evaluation of its antimicrobial and anticancer properties. Res Chem Intermed 2021;47(3):1285-96. DOI: 10.1007/s11164-020-04355-w [DOI:10.1007/s11164-020-04355-w]
7. Ankegowda VM, Kollur SP, Prasad SK, Pradeep S, Dhramashekara C, Jain AS, et al. Phyto-mediated synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of its cytotoxic and antimicrobial potential. Molecules 2020;25(21):5042. https://doi.org/10.3390/molecules25215042 [DOI:10.3390%2Fmolecules25215042] [PMID] []
8. Baker A, Iram S, Syed A, Elgorban AM, Bahkali AH, Ahmad K, et al. Fruit derived potentially bioactive bioengineered silver nanoparticles. Int J Nanomed 2021;16:7711. https://doi.org/10.2147/IJN.S330763 [DOI:10.2147%2FIJN.S330763] [PMID] []
9. Rezaei MR, Es‐haghi A, Yaghmaei P, Ghobeh M. Biological fabrication of Ag/Ag2O nanoparticles by Haplophyllum obtusifolium watery extract: characterisation and estimation of its biochemical activities. Micro Nano Lett 2020;15(13):898-902. [DOI:10.1049/mnl.2020.0269]
10. Mobaraki F, Momeni M, Jahromi M, Kasmaie FM, Barghbani M, Yazdi MET, et al. Apoptotic, antioxidant and cytotoxic properties of synthesized AgNPs using green tea against human testicular embryonic cancer stem cells. Process Biochem 2022. [DOI:10.1016/j.procbio.2022.05.021]
11. Darroudi M, Yazdi MET, Amiri MS. Plant-Mediated Biosynthesis of Nanoparticles. 21st Century Nanoscience-A Handbook: CRC Press; 2020. p. 1-18. [DOI:10.1201/9780429351525-1]
12. Zarei M, Karimi E, Oskoueian E, Es-Haghi A, Yazdi MET. Comparative study on the biological effects of sodium citrate-based and apigenin-based synthesized silver nanoparticles. Nutr Cancer 2021;73(8):1511-9. [DOI:10.1080/01635581.2020.1801780] [PMID]
13. Wasilewska A, Klekotka U, Zambrzycka M, Zambrowski G, Święcicka I, Kalska-Szostko B. Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chem 2023;400:133960. [DOI:10.1016/j.foodchem.2022.133960] [PMID]
14. Logambal S, Thilagavathi T, Chandrasekar M, Inmozhi C, Kedi PBE, Bassyouni F, et al. Synthesis and antimicrobial activity of silver nanoparticles: incorporated couroupita guianensis flower petal extract for biomedical applications. J King Saud Univ Sci 2023;35(1):102455. [DOI:10.1016/j.jksus.2022.102455]
15. Essghaier B, Dridi R, Mottola F, Rocco L, Zid MF, Hannachi H. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. Nanomaterials 2023;13(1):100. [DOI:10.3390/nano13010100] [PMID] []
16. Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, et al. Synthesis, characterization and biomedical application of silver nanoparticles. Materials 2022;15(2):427. https://doi.org/10.3390/ma15020427 [DOI:10.3390%2Fma15020427] [PMID] []
17. Sharma D, Gulati SS, Sharma N, Chaudhary A. Sustainable synthesis of silver nanoparticles using various biological sources and waste materials: A review. Emergent Mater 2022;5(6):1649-78. http://dx.doi.org/10.1007/s42247-021-00292-5 [DOI:10.1007/s42247-021-00292-5]
18. Sharma R, Tripathi A. Green synthesis of nanoparticles and its key applications in various sectors. Mater Today Proc 2022;48:1626-32. [DOI:10.1016/j.matpr.2021.09.512]
19. Yuan Y, Ding L, Chen Y, Chen G, Zhao T, Yu Y. Nano-silver functionalized polysaccharides as a platform for wound dressings: A review. Int J Biol Macromol 2022;194:644-53. [DOI:10.1016/j.ijbiomac.2021.11.108] [PMID]
20. Roy A, Murthy HA, Ahmed HM, Islam MN, Prasad R. Phytogenic synthesis of metal/metal oxide nanoparticles for degradation of dyes. J. Renewable Mater 2022;10(7):1911. http://dx.doi.org/10.32604/jrm.2022.019410 [DOI:10.32604/jrm.2022.019410]
21. Zarharan H, Bagherian M, Rokhi AS, Bajgiran RR, Yousefi E, Heravian P, et al. The anti-angiogenesis and antioxidant activity of chitosan-mediated synthesized selenium-gold nanostructure. Arabian J Chem 2023;16(7):104806. http://dx.doi.org/10.1016/j.arabjc.2023.104806 [DOI:10.1016/j.arabjc.2023.104806]
22. Ghorani-Azam A, Mottaghipisheh J, Amiri MS, Mashreghi M, Hashemzadeh A, Haddad-Mashadrizeh A, et al. Resveratrol-Mediated Gold-Nanoceria Synthesis as Green Nanomedicine for Phytotherapy of Hepatocellular Carcinoma. Front Biosci Landmark 2022;27(8):227. [DOI:10.31083/j.fbl2708227] [PMID]
23. Shakerimanesh K, Bayat F, Shahrokhi A, Baradaran A, Yousefi E, Mashreghi M, et al. Biomimetic synthesis and characterisation of homogenouse gold nanoparticles and estimation of its cytotoxity against breast cancer cell line. Mater Technol 2022:1-8. http://dx.doi.org/10.1080/10667857.2022.2081287 [DOI:10.1080/10667857.2022.2081287]
24. Mousavi-Kouhi SM, Beyk-Khormizi A, Mohammadzadeh V, Ashna M, Es-haghi A, Mashreghi M, et al. Biological synthesis and characterization of gold nanoparticles using Verbascum speciosum Schrad. and cytotoxicity properties toward HepG2 cancer cell line. Res Chem Intermed 2022;48(1):167-78. https://link.springer.com/article/10.1007%2Fs11164-021-04600-w [DOI:10.1007/s11164-021-04600-w]
25. Ashna M, Es-Haghi A, Karimi Noghondar M, Al Amara D, Yazdi MET. Greener synthesis of cerium oxide nanoemulsion using pollen grains of Brassica napus and evaluation of its antitumour and cytotoxicity properties. Mater Technol 2022;37(8):525-32. http://dx.doi.org/10.1080/10667857.2020.1863558 [DOI:10.1080/10667857.2020.1863558]
26. Es-haghi A, Javadi F, Yazdi MET, Amiri MS. The Expression of Antioxidant Genes and Cytotoxicity of Biosynthesized Cerium Oxide Nanoparticles Against Hepatic Carcinoma Cell Line. Avicenna Med Biochem 2019;7(1):16-20. [DOI:10.34172/ajmb.2019.04]
27. Yazdi MET, Amiri MS, Akbari S, Sharifalhoseini M, Nourbakhsh F, Mashreghi M, et al. Green synthesis of silver nanoparticles using helichrysum graveolens for biomedical applications and wastewater treatment. BioNanoSci 2020;10(4):1121-7. https://link.springer.com/article/10.1007/s12668-020-00794-2 [DOI:10.1007/s12668-020-00794-2]
28. Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-based gums and mucilages applications in pharmacology and nanomedicine: a review. Molecules 2021;26(6):1770. [DOI:10.3390/molecules26061770] [PMID] []
29. Modarres M, Taghavizadeh Yazdi ME. Elicitation improves phenolic acid content and antioxidant enzymes activity in salvia leriifolia cell cultures. Iran J Sci 2021;45(3):849-55. http://dx.doi.org/10.1007/s40995-021-01070-y [DOI:10.1007/s40995-021-01070-y]
30. Yazdi MET, Amiri MS, Darroudi M. Biopolymers in the Synthesis of Different Nanostructures. In: Hashmi S, Choudhury IA, editors. Encyclopedia of Renewable and Sustainable Materials. Oxford: Elsevier; 2020. p. 29-43. http://dx.doi.org/10.1016/B978-0-12-803581-8.10560-0 [DOI:10.1016/B978-0-12-803581-8.10560-0]
31. Ahmadi R, Es-haghi A, Zare-Zardini H, Taghavizadeh Yazdi ME. Nickel oxide nanoparticles synthesized by Rose hip extract exert cytotoxicity against the HT-29 colon cancer cell line through the caspase-3/caspase-9/Bax pathway. Emergent Mater 2023:1-12. [DOI:10.1007/s42247-023-00572-2]
32. Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep 2020;10(1):1-11. [DOI:10.1038/s41598-020-69606-7] [PMID] []
33. Amiri MS, Yazdi MET, Rahnama M. Medicinal plants and phytotherapy in Iran: Glorious history, current status and future prospects. Plant Sci Today 2021;8(1):95-111. https://orcid.org/0000-0002-3429-4479 [DOI:10.14719/pst.2021.8.1.926]
34. Nadaf M, Amiri MS, Joharchi MR, Omidipour R, Moazezi M, Mohaddesi B, et al. Ethnobotanical Diversity of Trees and Shrubs of Iran: A Comprehensive Review. Int J Plant Biol 2023;14(1):120-46. [DOI:10.3390/ijpb14010011]
35. Yazdi MET, Modarres M, Amiri MS, Darroudi M. Phyto-synthesis of silver nanoparticles using aerial extract of Salvia leriifolia Benth and evaluation of their antibacterial and photo-catalytic properties. Res Chem Intermed 2019;45(3):1105-16. https://link.springer.com/article/10.1007/s11164-018-3666-8 [DOI:10.1007/s11164-018-3666-8]
36. Yazdi T, Ehsan M, Housaindokht MR, Sadeghnia HR, Esmaeilzadeh Bahabadi S, Amiri MS, et al. Assessment of phytochemical components and antioxidant activity of Rheum turkestanicum Janisch. Stud Med Sci 2020;31(2):75-81. http://umj.umsu.ac.ir/article-1-4660-en.html [Google Scholar]
37. Nadaf M, Halimi Khalil Abad M, Gholami A, Taghavizadeh Yazdi ME, Iriti M, Mottaghipisheh J. Phenolic content and antioxidant activity of different Iranian populations of Anabasis aphylla L. Nat Prod Res 2022:1-5. [DOI:10.1080/14786419.2022.2150621] [PMID]
38. Yazdi MET, Darroudi M, Amiri MS, Hosseini HA, Nourbakhsh F, Mashreghi M, et al. Anticancer, antimicrobial, and dye degradation activity of biosynthesised silver nanoparticle using Artemisia kopetdaghensis. Micro Nano Lett 2020;15(14):1046-50. [DOI:10.1049/mnl.2020.0387]
39. Yazdi MET, Khara J, Sadeghnia HR, Bahabadi SE, Darroudi M. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Res Chem Intermed 2018;44(2):1325-34. https://link.springer.com/article/10.1007/s11164-017-3169-z [DOI:10.1007/s11164-017-3169-z]
40. Taghavizadeh Yazdi ME, Hamidi A, Amiri MS, Kazemi Oskuee R, Hosseini HA, Hashemzadeh A, et al. Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mater Technol 2019;34(8):490-7. http://dx.doi.org/10.1080/10667857.2019.1583408 [DOI:10.1080/10667857.2019.1583408]
41. Halimi Khalil Abad MMN, Yazdi MET. Biosynthesis of ZnO.Ag2O3 using aqueous extract of Haplophyllum obtusifolium: Characterization and cell toxicity activity against liver carcinoma cells. Micro Nano Lett 2023;18. [DOI:10.1049/mna2.12170]
42. Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Hashemzadeh A, Mohammadzadeh V, et al. Plant Gel-Mediated Synthesis of Gold-Coated Nanoceria Using Ferula gummosa: Characterization and Estimation of Its Cellular Toxicity toward Breast Cancer Cell Lines. J Funct Biomater 2023;14(7):332. https://doi.org/10.3390/jfb14070332 [DOI:10.3390%2Fjfb14070332] [PMID] []
43. Sepahi S, Gerayli S, Delirrad M, Taghavizadeh Yazdi ME, Zare‐Zardini H, Bushehri B, et al. Biochemical responses as early and reliable biomarkers of organophosphate and carbamate pesticides intoxication: A systematic literature review. J Biochem Mol Toxicol 2022:e23285. [DOI:10.1002/jbt.23285] [PMID]
44. Seyedi Z, Amiri MS, Mohammadzadeh V, Hashemzadeh A, Haddad-Mashadrizeh A, Mashreghi M, et al. Icariin: A Promising Natural Product in Biomedicine and Tissue Engineering. J Funct Biomater 2023;14(1):44. [DOI:10.3390/jfb14010044] [PMID] []
45. Farahi SMM, Yazdi MET, Einafshar E, Akhondi M, Ebadi M, Azimipour S, et al. The effects of titanium dioxide (TiO2) nanoparticles on physiological, biochemical, and antioxidant properties of Vitex plant (Vitex agnus-Castus L). Heliyon 2023. https://doi.org/10.1016/j.heliyon.2023.e22144 [DOI:10.1016%2Fj.heliyon.2023.e22144] [PMID] []
46. Mohammadzadeh V, Rahiman N, Cabral H, Quader S, Zirak MR, Yazdi MET, et al. Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. J Controlled Release 2023;362:278-96. [DOI:10.1016/j.jconrel.2023.08.049] [PMID]
47. Alabyadh T, Albadri R, Es-Haghi A, Yazdi MET, Ajalli N, Rahdar A, et al. ZnO/CeO2 Nanocomposites: Metal-Organic Framework-Mediated Synthesis, Characterization, and Estimation of Cellular Toxicity toward Liver Cancer Cells. J Funct Biomater 2022;13(3):139. [DOI:10.3390/jfb13030139] [PMID] []
48. Mohammadzadeh V, Barani M, Amiri MS, Yazdi MET, Hassanisaadi M, Rahdar A, et al. Applications of plant-based nanoparticles in nanomedicine: A review. Sustainable Chem Pharm 2022;25:100606. http://dx.doi.org/10.1016/j.scp.2022.100606 [DOI:10.1016/j.scp.2022.100606]
49. Javad Farhangi M, Es-haghi A, Taghavizadeh Yazdi ME, Rahdar A, Baino F. MOF-Mediated Synthesis of CuO/CeO2 Composite Nanoparticles: Characterization and Estimation of the Cellular Toxicity against Breast Cancer Cell Line (MCF-7). J Funct Biomater 2021;12(4):53. [DOI:10.3390/jfb12040053] [PMID] []
50. Taghavizadeh Yazdi ME, Amiri MS, Nourbakhsh F, Rahnama M, Forouzanfar F, Mousavi SH. Bio-indicators in cadmium toxicity: Role of HSP27 and HSP70. Environ Sci Pollut Res 2021;28(21):26359-79. [DOI:10.1007/s11356-021-13687-y] [PMID]
51. Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS, Mashreghi M, Yazdi MET. Silver-zinc oxide nanocomposite: From synthesis to antimicrobial and anticancer properties. Ceramics Int 2021;47(15):21490-7. http://dx.doi.org/10.1016/j.ceramint.2021.04.160 [DOI:10.1016/j.ceramint.2021.04.160]
52. Taghavizadeh Yazdi ME, Darroudi M, Amiri MS, Zarrinfar H, Hosseini HA, Mashreghi M, et al. Antimycobacterial, anticancer, antioxidant and photocatalytic activity of biosynthesized silver nanoparticles using Berberis Integerrima. Iran J Sci 2022;46(1):1-11. http://dx.doi.org/10.1007/s40995-021-01226-w [DOI:10.1007/s40995-021-01226-w]
53. Yazdi MET, Amiri MS, Hosseini HA, Oskuee RK, Mosawee H, Pakravanan K, et al. Plant-based synthesis of silver nanoparticles in Handelia trichophylla and their biological activities. Bullet Mater Sci 2019;42(4):155. http://dx.doi.org/10.1007/s12034-019-1855-8 [DOI:10.1007/s12034-019-1855-8]
54. Yazdi MET, Khara J, Housaindokht MR, Sadeghnia HR, Bahabadi SE, Amiri MS, et al. Role of Ribes khorassanicum in the biosynthesis of AgNPs and their antibacterial properties. IET Nanobiotech 2018;13(2):189-92. https://doi.org/10.1049/iet-nbt.2018.5215 [DOI:10.1049%2Fiet-nbt.2018.5215] [PMID] []
55. Singh C, Anand SK, Upadhyay R, Pandey N, Kumar P, Singh D, et al. Green synthesis of silver nanoparticles by root extract of Premna integrifolia L. and evaluation of its cytotoxic and antibacterial activity. Mater Chem Physic 2023:127413. http://dx.doi.org/10.1016/j.matchemphys.2023.127413 [DOI:10.1016/j.matchemphys.2023.127413]
56. Alzubaidi AK, Al-Kaabi WJ, Ali AA, Albukhaty S, Al-Karagoly H, Sulaiman GM, et al. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Applied Sci 2023;13(4):2182. [DOI:10.3390/app13042182]
57. Rajivgandhi G, Chelliah CK, Ramachandran G, Chackaravarthi G, Maruthupandy M, Alharbi NS, et al. Morphological modification of silver nanoparticles against multi-drug resistant gram-negative bacteria and cytotoxicity effect in A549 lung cancer cells through in vitro approaches. Arch Microbiol 2023;205(8):282. [DOI:10.1007/s00203-023-03611-y] [PMID]
58. Al-Sheddi ES, Alsohaibani N, bin Rshoud N, Al-Oqail MM, Al-Massarani SM, Farshori NN, et al. Anticancer efficacy of green synthesized silver nanoparticles from Artemisia monosperma against human breast cancer cells. S Afr J Bot 2023;160:123-31. [DOI:10.1155/2018/9390784] [PMID] []
59. Fateme Momen Eslamieh-ei NS, Samira Amin Poustchi Tousi, Samira Basharkhah, Javad Mottaghipisheh, Ali Es-haghi, Mohammad Ehsan Taghavizadeh Yazdi & Marcello Iriti. Synthesis and its characterisation of selenium/silver/chitosan and cellular toxicity against liver carcinoma cells studies. Nat Prod Res 2023. [DOI:10.1080/14786419.2023.2256023] [PMID]
60. Chang X, Niu S, Shang M, Li J, Guo M, Zhang W, et al. ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles. Redox Biol 2023;63:102739. https://doi.org/10.1016/j.redox.2023.102739 [DOI:10.1016%2Fj.redox.2023.102739] [PMID] []
61. Naik J, David M. ROS mediated apoptosis and cell cycle arrest in human lung adenocarcinoma cell line by silver nanoparticles synthesized using Swietenia macrophylla seed extract. J Drug Delivery Sci Technol 2023;80:104084. [DOI:10.1016/j.jddst.2022.104084]
62. Hamidi A, Yazdi MET, Amiri MS, Hosseini HA, Darroudi M. Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Res Chem Intermed 2019;45(5):2915-25. https://link.springer.com/article/10.1007/s11164-019-03770-y [DOI:10.1007/s11164-019-03770-y]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb