Volume 35, Issue 6 (September 2024)                   Studies in Medical Sciences 2024, 35(6): 456-466 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

baensaf M, Azadbar A R. INVESTIGATION OF RIGHT AND LEFT EYE TISSUES ABSORBED DOSE IN THE TREATMENT OF CHOROIDAL MELANOMA WITH 131CS COMS PLAQUE USING MCNPX MONTE CARLO CODE. Studies in Medical Sciences 2024; 35 (6) :456-466
URL: http://umj.umsu.ac.ir/article-1-6285-en.html
Assistant Professor, Department of medical radiation Engineering , Faculty of Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran (Corresponding Author) , Al.azadbar@iau.ac.ir
Abstract:   (288 Views)
Background & Aims: Eye plaque brachytherapy is a suitable method for choroidal melanoma treatment. In eye tumors brachytherapy, 131Cs radioisotope has the potential to reach the highest dose to the cancerous tissue and the lowest dose to the healthy tissues. This study's aim is to investigate the received dose of choroidal melanoma tumor and right and left eye tissues in eye and water phantoms from a COMS plaque containing 131Cs seeds by simulation in MCNPX code.
Materials & Methods: First, two human eyes with full details, an 8-mm-high choroidal melanoma tumor in the right eye, and a 16-mm COMS eye plaque with 13 seeds of 131Cs that is perpendicular to the tumor were simulated in MCNPX code in an environment with dimensions of 30×30×30 cm3. Then, the absorbed dose resulting from one decay in the tumor and other tissues of the right and left eye were simulated in the eye and water phantoms, and based on that, the cumulative dose during the treatment in these tissues was calculated.
Results: To deliver a cumulative dose of 85 Gy to the top of the tumor in 7 days, the activity of the 13 seeds of ¹³¹Cs for the eye and water phantoms should be equal to 21.86 and 23.32 mCi, respectively. In the water phantom, this activity results in the absorption of a 17.36 and 1.44 Gy cumulative dose more than in the eye phantom, in the tissues of the right and left eyes, respectively.
Conclusion: In this study, the cumulative dose of healthy tissues around the tumor in the eye phantom is lower than that in the water phantom, which is in agreement with the results of other studies. Therefore, by calculating the activity or treatment time using a phantom that is defined based on the actual dimensions of the patient's eye and the tumor inside it, it is possible to prevent more irradiation of the healthy tissues adjacent to the tumor, which also leads to the reduction of stochastic and nonstochastic effects.
 
Full-Text [PDF 695 kb]   (231 Downloads)    
Type of Study: Research | Subject: فیزیک پزشکی

References
1. Puusaari I, Heikkonen J, Kivelä T. Ocular complications after iodine brachytherapy for large uveal melanomas. Ophthalmology 2004;111(9):1768-77. [PMID: 15350335] [DOI:10.1016/j.ophtha.2004.03.027]
2. Damato B, Eleuteri A, Taktak AF, Coupland SE. Estimating prognosis for survival after treatment of choroidal melanoma. Prog Retin Eye Res 2011;30(5):285-95. [PMID: 21658465] [DOI:10.1016/j.preteyeres.2011.05.003]
3. Radiology TEsfT, ESTRO O, Pötter R, Mazeron J-J. The GEC ESTRO handbook of brachytherapy: ACCO; 2002. [URL:]
4. Kline R, Yeakel P. Ocular melanoma, I-125 plaques. Med Phys 1987;14(3):475. [URL:]
5. Zimmerman LE, McLean IW, Foster WD. Statistical analysis of follow-up data concerning uveal melanomas, and the influence of enucleation. Ophthalmology 1980;14(3):475. [PMID: 7413145] [DOI:10.1016/S0161-6420(80)35196-8]
6. Manimaran S. Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose. Radiat. Med 2007;229:25-35. [PMID: 17581712] [DOI:10.1007/s11604-007-0131-9]
7. Melia B, Abramson D, Albert D, Boldt H, Earle J, Hanson W, et al. Collaborative ocular melanoma study (COMS) randomized trial of I-125 brachytherapy for medium choroidal melanoma. I. Visual acuity after 3 years COMS report no. 16. Ophthalmology 2001;108(2):348-66. [PMID: 11158813] [DOI:10.1016/S0161-6420(00)00526-1]
8. Khan FM, Gibbons JP. Khan's the physics of radiation therapy: Lippincott Williams & Wilkins; 2014. [URL:]
9. Chiu‐Tsao ST, Astrahan MA, Finger PT, Followill DS, Meigooni AS, Melhus CS, et al. Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: Report of Task Group 129 by the AAPM and ABS. Med. Phys 2012;39(10):6161-84. [PMID: 23039655] [DOI:10.1118/1.4749933]
10. Lesperance M, Martinov M, Thomson R. Monte Carlo dosimetry for 103Pd, 125I, and 131Cs ocular brachytherapy with various plaque models using an eye phantom. Med. Phys 2014;41(3):031706. [PMID: 24593710] [DOI:10.1118/1.4864474]
11. Yazdani M, MOULAVI A. Determining TG-43 brachytherapy dosimetry parameters and dose distribution for a 131Cs source model CS-1. Iran. J. Radiat. Res 2007;5(2):90-85. [URL:]
12. Ahmadi OL, Tavakoli-Anbaran H. Calculation of the effect of beta beams, bremsstrahlung x-ray, and the use of 10b particles on increasing dose equivalent to 252cf brachytherapy source. Stud. Med. Sci 2022;33(6):441-50. [URL:] [DOI:10.52547/umj.33.6.441]
13. Pourfallah T, Nematpour M, Seifi Makarani D, Mihandoost E, Davoodian S. Calculation of spinal cord received dose in esophageal cancer radiotherapy: a comparison between monte carlo simulation and treatment planning system. Stud. Med. Sci 2024;34(12):781-93. [URL:] [DOI:10.61186/umj.34.12.781]
14. Yu K, Mitropolsky I, Rodionov A. Nuclear data sheets for A= 131. J. Nuclear Data Sheets 2006;107(11):2715-930. [URL:] [DOI:10.1016/j.nds.2006.10.001]
15. Lesperance M, Inglis‐Whalen M, Thomson R. Model‐based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom. Med. Phys 2014;41(2):021717. [PMID: 24506608] [DOI:10.1118/1.4861715]
16. Ebrahimi-Khankook A, Vejdani-Noghreiyan A. Dosimetric comparison between realistic ocular model and other models for COMS plaque brachytherapy with 103Pd, 131Cs, and 125I radioisotopes. Radiat. Environ. Biophys 2018;57(3):265-75. [PMID: 29882078] [DOI:10.1007/s00411-018-0748-3]
17. Masoudi SF, Daryabari FS, Rasouli FS. Distribution modeling of nanoparticles for brachytherapy of human eye tumor. EJNMMI Phys 2020;1:7-13. [PMID: 32816237] [DOI:10.1186/s40658-020-00321-y] [PMCID: PMC7441132]
18. Hubley E, Trager M, Bar-Ad V, Luginbuhl A, Doyle L. A nomogram to determine required seed air kerma strength in planar Cesium-131 permanent seed implant brachytherapy. J. Contemp. Brachytherapy 2019;11(1):91-8. [PMID: 30911315] [DOI:10.5114/jcb.2019.82716] [PMCID: PMC6431101]
19. Johnson TE. Introduction to health physics: McGraw Hill Professional; 2017. [URL:]
20. Takeda A, Shigematsu N, Suzuki S, Fujii M, Kawata T, Kawaguchi O, et al. Late retinal complications of radiation therapy for nasal and paranasal malignancies: relationship between irradiated-dose area and severity. Int J Radiat Oncol Biol Phys 1999;44(3):599-605. [PMID: 10348290] [DOI:10.1016/S0360-3016(99)00057-7]
21. Monroe A, Bhandare N, Morris C, Mendenhall W. Preventing radiation retinopathy with hyperfractionation. Int J Radiat Oncol Biol Phys 2004;60(1):S 188. [PMID: 15708266] [DOI:10.1016/j.ijrobp.2004.06.122]
22. Wagner A, Chen A, Cook T, Faber D, Winward K, Sause W. Outcomes and control rates for I-125 plaque brachytherapy for uveal melanoma: a community‐based institutional experience. International Scholarly Research Notices 2014;2014(1):950975. [URL:] [DOI:10.1155/2014/950975]
23. Oare C, Sun S, Dusenbery K, Reynolds M, Koozekanani D, Gerbi B, et al. Analysis of dose to the macula, optic disc, and lens in relation to vision toxicities- A retrospective study using COMS eye plaques. Physica Medica 2022;71:101-8. [PMID: 35981450] [DOI:10.1016/j.ejmp.2022.08.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb