Volume 33, Issue 6 (September 2022)                   Studies in Medical Sciences 2022, 33(6): 441-450 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5253-en.html
Associate Professor, Faculty of Physics and Nuclear Engineering, Shahrood University of Technology, Shahrood, Iran , tavakoli-anbaran@shahroodut.ac.ir
Abstract:   (724 Views)
Background & Aims: 252Cf is a source of emission of neutron, gamma rays, and beta and alpha particles. In the common models of this source used in brachytherapy, only neutrons and gamma rays contribute in the dosimetry around the source. In this study, while investigating the escape of beta rays and bremsstrahlung X-rays from the source capsule of brachytherapy 252Cf of Isotron model, the dosimetry of the total effective radiation in the water environment around the source was performed and the total equivalent dose increase was calculated using 10B particles.
Materials & Methods: Dosimetry for the neutron rays, the primary gammas, the secondary gammas, the beta particles, and the bremsstrahlung X-rays in the spherical water phantom performed with the radius of 20 cm at the distances of 0.5 to 6 cm from the source using the Monte Carlo MCNPX.2.6.0 code. Dose increment factor was calculated using B10 particles with a concentration of 50 ppm.
Results: The highest relative difference in dose values, taking into account the X-ray and the beta particles their absence at the distance of 0.5 cm from the source, was %19. As the distance from the source increases, the effect of these rays on the total equivalent dose rate decrease, as in the distance of 2.5 cm distance, its values reach less than % 0.5. The boron effect on the total equivalent dose increases by distance from the source, as at the 0.5 to 6 cm distances from the source will increase from %0.01 to more than % 22.
Conclusion: According to the findings of this study, the dose of the X-rays and the beta particles passing through the source capsule are effective in the dosimetry around the source, and increasing the dose by 10B depends on increasing the tumor source distance, which should be considered in clinical applications.
Full-Text [PDF 762 kb]   (399 Downloads)    
Type of Study: Research | Subject: Medical Physics

1. Frederick C. H and et al. A review of Evaluation of time-dependent strengths of californium neutron sources by decay of 252Cf, 250Cf, and 248Cm: Uncertainties by Monte Carlo method. Appl Radiat Isot 2021;167:109454. [DOI:10.1016/j.apradiso.2020.109454] [PMID]
2. Chris Wang CK. Progress in californium-252 neutron brachytherapy. Brachytherapy. Kishi K. InTech; 2012. P. 34-58. [DOI:10.5772/34172]
3. Fortune E, Gauld I, Wang C. Gamma Dose near a New Miniature Cf‐252 Brachytherapy Source. Med Phys 2011;175:73-6. [DOI:10.13182/NT11-A12272]
4. Maruyama Y, Yoneda J, Powell D, Kryscio RJ. A review of californium-252 neutron brachytherapy for cervical cancer. Cancer 1991;68(6):1189-97. https://doi.org/10.1002/1097-0142(19910915)68:6<1189::AID-CNCR2820680602>3.0.CO;2-F [DOI:10.1002/1097-0142(19910915)68:63.0.CO;2-F] [PMID]
5. Beach JL, Schroy CB, Ashtari M, Harris MR, Maruyama Y. Boron neutron capture enhancement 252Cf Brachytherapy. Int J Radiat Oncol Biol Phys 1990;18(6):1421-7. [DOI:10.1016/0360-3016(90)90317-D] [PMID]
6. Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun 2018;38(1):36. Available from: http://dx.doi.org/10.1186/s40880-018-0280-5. [DOI:10.1186/s40880-018-0280-5] [PMID] [PMCID]
7. Rivard MJ, Zamenhof RG. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose. Appl Radiat Isot 2004;61(5):753-7. Available from: http://dx.doi.org/10.1016/j.apradiso.2004.05.017. [DOI:10.1016/j.apradiso.2004.05.017] [PMID]
8. Ghassoun J, Mostacci D, Molinari V. Detailed dose distribution prediction of 252Cf brachytherapy source with boron loading dose enhancement. Appl Radiat Isot 2010;68:265-70. [DOI:10.1016/j.apradiso.2009.10.004] [PMID]
9. Khosroabadi M, Ghorbani M, Rahmani F, Knaup C. Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs. Australas Phys Eng Sci Med 2014;37(3):541-9. Available from: http://dx.doi.org/10.1007/s13246-014-0284-7. [DOI:10.1007/s13246-014-0284-7] [PMID]
10. Wang C, Kelm R. SU-FF-T-61: Determination of neutron and gamma dose rates in water surrounding a new interstitial cf-252 brachytherapy source. Med Phys 2009;36(6Part9):2533. Available from: http://dx.doi.org/10.1118/1.3181533 . [DOI:10.1118/1.3181533]
11. Wang C, Kelm R. Determination of Neutron and Gamma Dose Rates in Water Surrounding a New Interstitial 252Cf Brachytherapy Source. Med Phys 2009; 36(pt 6):2533. [DOI:10.1118/1.3181533]
12. Al-Saihati I, Naqvi AA. Neutron and gamma-ray doses from a 252Cf brachytherapy source in a water phantom. J Radioanal Nucl Chem 2013;296:963-6. [DOI:10.1007/s10967-012-2172-5]
13. Ahmadi OL, Tavakoli-Anbaran H. Study of the rate of absorption dose of all rays emitted from the source of 252Cf brachytherapy source using Monte Carlo method. Iran J Radiation Safety Measur 2019; 7(3):29-34 (Persian). [URL]
14. Ahmadi OL, Tavakoli-Anbaran H. Study of the rate of absorption dose of all rays emitted from the source of 252Cf brachytherapy source using Monte Carlo method. Sains Malays 2020;49(3):693-701. [DOI:10.17576/jsm-2020-4903-24]
15. Karimi-Shahri K, Izadi-Vasafi GhH, Firoozabadi MM, Ghorbani M. Dosimetric effects of composition, location and size of tissue heterogeneities on 252Cf neutron brachytherapy. Appl Radiat Isot 2021;171:109639. [DOI:10.1016/j.apradiso.2021.109639] [PMID]
16. Arianto F, Handayani LT, Budi WS, Basuki P. Determination of Neutron Flux in Brain Cancer Boron Neutron Capture Therapy Using Monte Carlo Simulation. Phys Comm 2022;6(2):79-84. [DOI:10.15294/physcomm.v6i2.40277]
17. Rivard MJ, Wierzbicki JG, Van den Heuvel F, Martin RC, McMahon RR. Clinical brachytherapy with neutron emitting 252Cf sources and adherence to AAPM TG-43 dosimetry protocol. Med Phys 1999; 26(pt 1):87-96. [DOI:10.1118/1.598472] [PMID]
18. Pelowitz D. MCNPX user's manual, LA-CP-07-1473 Version 2.6.0. Los Alamos National Laboratory, 2008. [URL]
19. Sakurai Y. Depth-Dose-Distribution control for incident beam directionality and irradiation field size in boron neutron capture therapy. J Nucl Sci Technol 2005;42(1):1-7. [DOI:10.1080/18811248.2005.9726358]
20. Palmer LR, Goorly JT, Kiger WS, Busse PM, Riley KJ, Harling OK et al. Treatmrnt planning and dosimetry for the Harvard -MIT phase I clinical trial of cranial neutron capture therapy. Int J Radiation Oncology Biol Phys 2002;53(pt 5):1361-79. [DOI:10.1016/S0360-3016(02)02862-6] [PMID]
21. Rosidah S, Sardjono Y, Sumardi Y. Dose analyze of boron neutron capture therapy (BNCT) at skin cancer melanoma using MCNPX with neutron source from thermal column of kartini reactor. Indonesian J Nucl Sci Technol 2017;2(pt 3):111-23. [DOI:10.24246/ijpna.v2i3.111-123]
22. Fortune EC. Gamma and neutron dose profiles near a Cf-252 brachytherapy source [dissertation]. Georgia Institute of Technology, 2010. [Google Scholar]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb