Volume 34, Issue 12 (March 2024)                   Studies in Medical Sciences 2024, 34(12): 781-793 | Back to browse issues page

Research code: 3097
Ethics code: IR.MAZUMS..REC.1397.3097


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourfallah T, Nematpour M, Seifi Makarani D, Mihandoost E, Davoodian S. CALCULATION OF SPINAL CORD RECEIVED DOSE IN ESOPHAGEAL CANCER RADIOTHERAPY: A COMPARISON BETWEEN MONTE CARLO SIMULATION AND TREATMENT PLANNING SYSTEM. Studies in Medical Sciences 2024; 34 (12) :781-793
URL: http://umj.umsu.ac.ir/article-1-6108-en.html
Associate Professor, Department of Medical Physics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran, , tpourfallah@gmail.com
Abstract:   (395 Views)
Background & Aim: Spinal cord is one of the organs at risk in esophageal cancer radiation therapy. The difference between the dose distribution due to the Treatment Planning System (TPS) and the patient's body dose is dependent on the calculation of the TPS algorithm, which is more pronounced in heterogeneities such as the Spinal cord. In this study, the dose distribution of TPS algorithm was compared with monte Carlo calculations in both homogeneous and heterogeneous tissue.
Materials & Methods: In this descriptive-analytical study, three-dimensional planning composed of four fields were done on the CT using the CorPLAN TPS of a SIEMENS PRIMUS linac. EGSnrc monte Carlo simulation code was used for the same conditions. The dose distribution obtained from Monte Carlo simulation and TPS was compared using PDD curve and Dose Difference Percentage index that obtained from these two modes.
Results: According to the results, the error rate from the TPS was less than 3% in the homogeneous tissue, whereas the error in the Spinal cord heterogeneity was significant (more than 5%).
Conclusion: Results shows that the accuracy of CorPLAN TPS at homogeneous tissue is more than in the Spinal cord heterogeneity and this should be considered in the clinic. The findings also indicate that the monte carlo code can be used to simulate and evaluate the dose distribution in radiotherapy, and in cases where the practical measurement of some dosimetric parameters is impossible or difficult, this code can be used for prediction and optimization of treatment plans.
Full-Text [PDF 645 kb]   (171 Downloads)    
Type of Study: Research | Subject: فیزیک پزشکی

References
1. Reya T, Morrison SJ, Clarke MF, Weissman ILJn. Stem cells, cancer, and cancer stem cells. nature 2001;414(6859):105. [DOI:10.1038/35102167] [PMID]
2. Ghavamzadeh A, Moussavi A, Jahani M, Rastegarpanah M, Iravani M. Esophageal cancer in Iran. Seminars in oncology 2001;28(2):153-7. [DOI:10.1053/sonc.2001.21957] [PMID]
3. Samadi F, Babaei M, Yazdanbod A, Fallah M, Nouraie M, Nasrollahzadeh D, et al. Survival rate of gastric and esophageal cancers in Ardabil province, North-West of Iran. Arch Iran Med 2007;10(1):32-7. [Google Scholar]
4. Radmard AR. Five common cancers in Iran. Arch Iran Med 2010;13(2):143. [Google Scholar]
5. Kamangar F, Malekzadeh R, Dawsey SM, Saidi F. Esophageal cancer in Northeastern Iran: a review. Arch Iran Med 2007;10(1):70-82. [Google Scholar]
6. Asmarian NS, Ruzitalab A, Amir K, Masoud S, Mahaki. Area-to-area poisson kriging analysis of mapping of county-level esophageal cancer incidence rates in Iran. Arch Iran Med 2013;14(1):11-3. [DOI:10.7314/APJCP.2013.14.1.11] [PMID]
7. Liang J, Mingyan E, Wu G, Zhao L, Li X, Xiu X, et al. Nimotuzumab combined with radiotherapy for esophageal cancer: preliminary study of a Phase II clinical trial. Onco Targets Ther 2013;6:1589. [DOI:10.2147/OTT.S50945] [PMID] []
8. Thwaites DI, Williams JR. Radiotherapy physics in practice: Oxford University Press; 1993. [URL]
9. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Onc 2009;10(7):718-26. [DOI:10.1016/S1470-2045(09)70082-8] [PMID]
10. Barrett A, Morris S, Dobbs J, Roques T. Practical radiotherapy planning: CRC Press; 2009. [DOI:10.1201/b13373]
11. Atun R, Jaffray DA, Barton MB, Bray F, Baumann M, Vikram B, et al. Expanding global access to radiotherapy. Lancet Onc 2015;16(10):1153-86. [DOI:10.1016/S1470-2045(15)00222-3] [PMID]
12. Pourfallah T, Shahidi M, Seifi Makrani D, Mihandoust E, Davodian S. Dosimetric Evaluation of Target Volume in Breast Boost Radiotherapy: Comparison of Electron and Photon Beam. J Mazandaran Univ Med 2019;29(175):65-75. [Google Scholar]
13. Knöös T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med 2006;51(22):5785. [DOI:10.1088/0031-9155/51/22/005] [PMID]
14. Seifi Makrani D, Pourfallah T. Evaluation of CorePlanTM treatment planning system for 6 and 15 MV photon irradiation. Iran J Med Physics 2018;15:343-. [Google Scholar]
15. Khan FM, Gibbons JP. The physics of radiation therapy: Lippincott Williams & Wilkins; 2014. [URL]
16. Arnfield MR, Siantar CH, Siebers J, Garmon P, Cox L, Mohan R. The impact of electron transport on the accuracy of computed dose. Med Phys 2000;27(6):1266-74. [DOI:10.1118/1.599004] [PMID]
17. Akino Y, Das IJ, Bartlett GK, Zhang H, Thompson E, Zook JEJMp. Evaluation of superficial dosimetry between treatment planning system and measurement for several breast cancer treatment techniques. Med Phys 2013;40(1):011714. [DOI:10.1118/1.4770285] [PMID]
18. Verhaegen F, Seuntjens J, biology. Monte Carlo modelling of external radiotherapy photon beams. Phys Med 2003;48(21):R107. [DOI:10.1088/0031-9155/48/21/R01] [PMID]
19. Makrani DS, Hasanzadeh H, Pourfallah TA, Ghasemi A, Jadidi M, Babapour H. Determination of primary electron beam parameters in a Siemens Primus Linac using Monte Carlo simulation. Arch Adv Biosci 2015;6(1):2008-4978. [Google Scholar]
20. Pourfallah TA, Allahverdi M, Zahmatkesh MH. Evaluation of the effects of inhomogeneities on dose profiles using polymer gel dosimeter and Monte Carlo simulation in Gamma Knife. Iran J Medphys 2012;9(1):1-8. [Google Scholar]
21. Chang-Ming, Li J, Pawlicki T, Jiang S, Deng J, Lee M, et al. A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys in Med 2002;47(10):1671. [DOI:10.1088/0031-9155/47/10/305] [PMID]
22. Chow JC, Leung MK, editors. A graphical user interface for calculation of 3D dose distribution using Monte Carlo simulations. J of phys Conf Series; 2008; 102:012003. [DOI:10.1088/1742-6596/102/1/012003]
23. Spezi E, Lewis DG. Gamma histograms for radiotherapy plan evaluation. Radiother Oncol 2006;79(2):224-30. [DOI:10.1016/j.radonc.2006.03.020] [PMID]
24. Tugrul T. Comparison of Monaco treatment planning system algorithms and Monte Carlo simulation for small fields in anthropomorphic RANDO phantom: The esophagus case. J Cancer Res Therapeutics 2021;17(6). [DOI:10.4103/jcrt.JCRT_1143_20] [PMID]
25. Altuwayrish A, Ghorbani M, Bakhshandeh M, Roozmand Z, Hoseini-Ghahfarokhi M. Comparison of PRIMO Monte Carlo code and Eclipse treatment planning system in calculation of dosimetric parameters in brain cancer radiotherapy. Rep Pract Oncol Radiother 2022;27(5):863-74. [DOI:10.5603/RPOR.a2022.0091] [PMID] []
26. Chaikh A, Balosso JJQIiM, Surgery. Quantitative comparison of dose distribution in radiotherapy plans using 2D gamma maps and X-ray computed tomography. Quant Imaging Med Surg 2016 2016;6(3):243-9. [DOI:10.21037/qims.2016.06.04] [PMID] []
27. Yu L, Baker A, Kairn T, Livingstone A, Trapp J, Crowe SB. A structure-based gamma evaluation method for identifying clinically relevant dose differences in organs at risk. Phys Eng Sci Med 2023;46(3):1033-41. [DOI:10.1007/s13246-023-01270-3] [PMID] []
28. Tuğrul T. The Effect of Algorithms on Dose Distribution in Inhomogeneous Phantom: Monaco Treatment Planning System versus Monte Carlo Simulation. J Med Phys 2021;46(2):111-5. [DOI:10.4103/jmp.JMP_21_21] [PMID] []
29. Reis CQM, Nicolucci P, Fortes SS, Silva LP. Effects of heterogeneities in dose distributions under nonreference conditions: Monte Carlo simulation vs dose calculation algorithms. Med Dosimetry 2019;44(1):74-82. [DOI:10.1016/j.meddos.2018.02.009] [PMID]
30. Oliveira C, Yoriyaz H, Oliveira MC, Ferreira L. Monte Carlo simulation for dose distribution calculations in a CT-based phantom at the Portuguese gamma irradiation facility. Nucl Inst 2004;213:662-5. [DOI:10.1016/S0168-583X(03)01682-3]
31. Chiavassa S, Bardiès M, Guiraud-Vitaux F, Bruel D, Jourdain J-R, Franck D, et al. OEDIPE: a personalized dosimetric tool associating voxel-based models with MCNPX. Cancer Biother Radiopharm 2005;20(3):325-32. [DOI:10.1089/cbr.2005.20.325] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb