Volume 36, Issue 3 (9-2025)                   Studies in Medical Sciences 2025, 36(3): 219-230 | Back to browse issues page

Ethics code: none


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moraveji F, Rezaeiani S, Mosafer Yadegari A S. Convergence of Signaling Pathways and Bioinformatics Analysis in Mesodermal Differentiation of iPSCs: Focus on KDR+/PDGFRα+ Populations for Cardiovascular Regeneration. Studies in Medical Sciences 2025; 36 (3) :219-230
URL: http://umj.umsu.ac.ir/article-1-6494-en.html
Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran , siamak.cytology@gmail.com
Abstract:   (58 Views)
Abstract:
Background and Objective:
 Cardiovascular diseases continue to be the leading cause of death worldwide. The use of iPSCs holds great promise for repairing heart and blood vessel tissues. Generation of cardiovascular progenitors requires precise modulation of these cells through signaling pathways. This study highlights the KDR and PDGFRα markers in guiding iPSCs toward mesodermal progenitors, specifically the KDR+/PDGFRα+ populations, which have enormous clinical promise for cardiovascular applications.

Method:  Gene transcript analysis involved obtaining data from the GEO database with accession number GSE90000. The GEO2R tool was used to identify genes with significant changes, defined as p-values < 0.05 and absolute log-fold changes > 2.
Functional classification of genes was performed to identify biological processes and signaling pathways using GO analysis with the DAVID tool.
Protein-protein networks were analyzed by simulating protein interactions using the STRING database, which helped identify key genes such as EOMES.
Signaling pathway analysis used tools including Cytoscape, Reactome, and X2K to analyze pathways involved in iPSC differentiation into cardiomyocytes.

Results: Our studies on KDR+/PDGFRα+ cells derived from iPSC differentiation revealed 1,635 genes that were significantly downregulated during cardiomyocyte formation, with p-values < 0.05 and |log-FC| ≥ 2. These genes include COCH, CYP26A1, and TUNAR. Using protein-protein interaction analysis, we identified EOMES (p-value 0.0026, |log-FC| -6.357) as a central transcription factor. Moreover, pathway enrichment analysis revealed a gradual downregulation of genes involved in cardiac disease, suggesting potential therapeutic applications.

Conclusion:  Integrating bioinformatics tools (GEO2R, STRING, Reactome) with multi-marker strategies (CD13, ROR2, APLNR) enhances the purity of cardiovascular progenitors, ultimately improving therapeutic applications in the treatment of cardiovascular diseases.
Full-Text [PDF 1035 kb]   (25 Downloads)    
Type of Study: Research | Subject: General

References
1. Chong B, Jayabaskaran J, Jauhari SM, Chan SP, Goh R, Kueh MTW, et al. Global burden of cardiovascular diseases: projections from 2025 to 2050. Eur J Prev Cardiol. 2025;32(11):1001-15. doi: 10.1093/eurjpc/zwadXXX [DOI:10.1093/eurjpc/zwae281] [PMID]
2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76. doi: 10.1016/j.cell.2006.07.024 [DOI:10.1016/j.cell.2006.07.024] [PMID]
3. Burdsal CA, Flannery ML, Pedersen RA. FGF-2 alters the fate of mouse epiblast from ectoderm to mesoderm in vitro. Dev Biol. 1998;198(2):231-44. doi: 10.1006/dbio.1998.8882 [DOI:10.1006/dbio.1998.8882] [PMID]
4. Carmeliet P. One cell, two fates. Nature. 2000;408(6808):43-5. doi: 10.1038/35040644 [DOI:10.1038/35040684] [PMID]
5. Feeney AK, Simmons AD, Peplinski CJ, Zhang X, Palecek SP. Enhancing human pluripotent stem cell differentiation to cardiomyocytes through cardiac progenitor reseeding and cryopreservation. iScience. 2025;28(5). doi: 10.1016/j.isci.2025.110123 [DOI:10.1016/j.isci.2025.112452] [PMID] []
6. Akiyama H, Katayama Y, Shimizu K, Honda H. Engineering a controlled cardiac multilineage co-differentiation process using statistical design of experiments. Stem Cell Res Ther. 2025;16(1):273. doi: 10.1186/s13287-025-03763-1 [DOI:10.1186/s13287-025-04408-0] [PMID] []
7. Gil C-H, Chakraborty D, Vieira CP, Prasain N, Calzi SL, Fortmann SD, et al. Specific mesoderm subset derived from human pluripotent stem cells ameliorates microvascular pathology in type 2 diabetic mice. Sci Adv. 2022;8(9):eabm5559. doi: 10.1126/sciadv.abm5559 [DOI:10.1126/sciadv.abm5559] [PMID] []
8. Sugimura R, Jha DK, Han A, Soria-Valles C, Da Rocha EL, Lu Y-F, et al. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature. 2017;545(7655):432-8. doi: 10.1038/nature22370 [DOI:10.1038/nature22370] [PMID] []
9. Lam Y-Y, Chan C-H, Geng L, Wong N, Keung W, Cheung Y-F. APLNR marks a cardiac progenitor derived with human induced pluripotent stem cells. Heliyon. 2023;9(7). doi: 10.1016/j.heliyon.2023.e17684 [DOI:10.1016/j.heliyon.2023.e17684] [PMID] []
10. Elcheva I, Brok-Volchanskaya V, Kumar A, Liu P, Lee J-H, Tong L, et al. Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. Nat Commun. 2014;5(1):4372. doi: 10.1038/ncomms5372 [DOI:10.1038/ncomms5372] [PMID] []
11. Jiao Y-C, Wang Y-X, Liu W-Z, Xu J-W, Zhao Y-Y, Yan C-Z, et al. Advances in the differentiation of pluripotent stem cells into vascular cells. World J Stem Cell. 2024;16(2):137. doi: 10.4252/wjsc.v16.i2.137 [DOI:10.4252/wjsc.v16.i2.137] [PMID] []
12. Grancharova T, Gerbin KA, Rosenberg AB, Roco CM, Arakaki JE, DeLizo CM, et al. A comprehensive analysis of gene expression changes in a high replicate and open-source dataset of differentiating hiPSC-derived cardiomyocytes. Sci Rep. 2021;11(1):15845. doi: 10.1038/s41598-021-95273-2 [DOI:10.1038/s41598-021-94732-1] [PMID] []
13. Lian X, Zhang J, Zhu K, Kamp TJ, Palecek SP. Insulin inhibits cardiac mesoderm, not mesendoderm, formation during cardiac differentiation of human pluripotent stem cells and modulation of canonical Wnt signaling can rescue this inhibition. Stem cells. 2013;31(3):447-57. doi: 10.1002/stem.1283 [DOI:10.1002/stem.1283] [PMID] []
14. Lee U, Zhang Y, Zhu Y, Luo AC, Gong L, Tremmel DM, et al. Robust differentiation of human pluripotent stem cells into mural progenitor cells via transient activation of NKX3. 1. Nat Commun. 2024;15(1):8392. doi: 10.1038/s41467-024-48392-1 [DOI:10.1038/s41467-024-52678-8] [PMID] []
15. Shen S, Werner T, Chiu HS, Chen X, Nguyen Q, Palpant NJ. A pluripotent stem cell atlas of multilineage differentiation. Sci Data. 2025;12(1):1238. doi: : 10.1038/s41597-025-03792-4 [DOI:10.1038/s41597-025-05549-w] [PMID] []
16. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature. 2008;453(7194):524-8. doi: 10.1038/nature06894 [DOI:10.1038/nature06894] [PMID]
17. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell stem. 2011;8(2):228-40. doi: 10.1016/j.stem.2010.12.008 [DOI:10.1016/j.stem.2010.12.008] [PMID]
18. NCBI GEO2R. Available from: https://www.ncbi.nlm.nih.gov/geo/geo2r/ [URL]
19. Gene Ontology enrichment analysis. Available from: https://geneontology.org/ [URL]
20. STRING database. Available from: https://string-db.org/ [URL]
21. Cytoscape. Available from: https://cytoscape.org/ [URL]
22. Reactome. Available from: https://reactome.org/ [URL]
23. X2K. Available from: https://maayanlab.cloud/X2K/ [URL]
24. Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PloS One. 2011;6(4):e18293. doi: 10.1371/journal.pone.0018293 [DOI:10.1371/journal.pone.0018293] [PMID] []
25. Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012;111(3):344-58. doi: 10.1161/CIRCRESAHA.110.227512 [DOI:10.1161/CIRCRESAHA.110.227512] [PMID] []
26. Bisson JA, Gordillo M, Kumar R, de Silva N, Yang E, Banks KM, et al. GATA6 regulates WNT and BMP programs to pattern precardiac mesoderm during the earliest stages of human cardiogenesis. eLife. 2025;13:RP100797. doi: 10.7554/eLife.100797 [DOI:10.7554/eLife.100797] [PMID] []
27. Skelton RJ, Brady B, Khoja S, Sahoo D, Engel J, Arasaratnam D, et al. CD13 and ROR2 permit isolation of highly enriched cardiac mesoderm from differentiating human embryonic stem cells. Stem Cell Reports. 2016;6(1):95-108. doi: 10.1016/j.stemcr.2015.11.012 [DOI:10.1016/j.stemcr.2015.11.012] [PMID] []
28. Ghazizadeh Z, Fattahi F, Mirzaei M, Bayersaikhan D, Lee J, Chae S, et al. Prospective isolation of ISL1+ cardiac progenitors from human ESCs for myocardial infarction therapy. Stem Cell Reports. 2018;10(3):848-59. doi: 10.1016/j.stemcr.2018.01.017 [DOI:10.1016/j.stemcr.2018.01.017] [PMID] []
29. Narsinh KH, Plews J, Wu JC. Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther. 2011;19(4):635-8. doi: 10.1038/mt.2011.41 [DOI:10.1038/mt.2011.41] [PMID] []
30. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183. doi: 10.1186/gb-2007-8-9-r183 [DOI:10.1186/gb-2007-8-9-r183] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.