Volume 36, Issue 2 (6-2025)                   Studies in Medical Sciences 2025, 36(2): 108-113 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kashef Hesary A, Rezaie J. Protein Corona on Extracellular Vesicles: Formation and Biological Function. Studies in Medical Sciences 2025; 36 (2) :108-113
URL: http://umj.umsu.ac.ir/article-1-6474-en.html
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran , rezaie.j@umsu.ac.ir
Abstract:   (216 Views)
Extracellular Vesicles (EVs) secreted by cells have become important agents of communication between cells. EVs promote tissue repair by transferring their molecular contents to target cells, influencing signaling pathways, metabolic functions, and gene expression. Recent studies indicate that numerous extracellular proteins interact with the surface of EVs dynamically, forming a layer referred to as the protein corona. The protein corona interacts with cell-surface receptors and enhances the specific absorption of EVs, thus affecting their therapeutic efficacy. The wide range of biomolecules can interact with the EVs’ surface, and the thickness of these coronal proteins is significantly different within biological fluids, impacting EVs’ kinetics, docking, uptake, biodistribution, and finally cell signaling. The elimination of the coronavirus protein from EVs remains a primary challenge and requires further study. Understanding the properties of the corona protein and eliminating it will be vital for optimizing cell-free therapies, opening new opportunities for progressing regenerative medicine. This review discusses the biogenesis of EVs and the formation of the protein corona. In addition, this review sheds light on the protein corona of EVs as a key factor influencing the function of EVs.
 
Full-Text [PDF 821 kb]   (122 Downloads)    
Type of Study: Review article | Subject: General

References
1. Sabatke B, Rossi IV, Sana A, Bonato LB, Ramirez M. Extracellular vesicles biogenesis and uptake concepts: A comprehensive guide to studying host-pathogen communication. Mol Microbiol. 2024;122(5):613-29. [DOI:10.1111/mmi.15168] [PMID]
2. Welsh JA, Goberdhan DC, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. [DOI:10.1002/jev2.12451] [PMID] []
3. Di Ianni E, Obuchi W, Breyne K, Breakefield XOJNRB. Extracellular vesicles for the delivery of gene therapy. Nat Rev Bioeng. 2025;3: 360-73. [DOI:10.1038/s44222-025-00277-7]
4. Buzas EI. Opportunities and challenges in studying the extracellular vesicle corona. Nat Cell Biol. 2022;24(9):1322-5. [DOI:10.1038/s41556-022-00983-z] [PMID]
5. Mo W, Peng Y, Zheng Y, Zhao S, Deng L, Fan X. Extracellular vesicle-mediated bidirectional communication between the liver and other organs: mechanistic exploration and prospects for clinical applications. J Nanobiotechnology. 2025;23(1):190. [DOI:10.1186/s12951-025-03259-4] [PMID] []
6. Hur YH, Feng S, Wilson KF, Cerione RA, Antonyak MA. Embryonic Stem Cell-Derived Extracellular Vesicles Maintain ESC Stemness by Activating FAK. Dev Cell. 2021;56(3):277-91.e6. [DOI:10.1016/j.devcel.2020.11.017] [PMID] []
7. Lee Y, Kim H, Yoon H, Cho S, Kim J, Lee J, et al. MFGE‐8, a Corona Protein on Extracellular Vesicles, Mediates Self‐Renewal and Survival of Human Pluripotent Stem Cells. J Extracell Vesicles. 2025;14(4):e70056. [DOI:10.1002/jev2.70056] [PMID] []
8. Esmaeili A, Baghaban Eslaminejad M, Hosseini S. Biomolecular corona potential in extracellular vesicle engineering for therapeutic applications. Biomed Pharmacother. 2025;188:118202. [DOI:10.1016/j.biopha.2025.118202] [PMID]
9. Shaban SA, Rezaie J, Nejati V. Exosomes derived from senescent endothelial cells contain distinct pro-angiogenic miRNAs and proteins. Cardiovasc Toxicol. 2022;22(6):592-601. [DOI:10.1007/s12012-022-09740-y] [PMID]
10. Rezaie J, Nejati V, Khaksar M, Oryan A, Aghamohamadzadeh N, Shariatzadeh MA, et al. Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res. 2018;374:555-65. [DOI:10.1007/s00441-018-2895-x] [PMID]
11. Almohammai A, Rahbarghazi R, Keyhanmanesh R, Rezaie J, Ahmadi MJJoI. Asthmatic condition induced the activity of exosome secretory pathway in rat pulmonary tissues. J Inflamm (Lond). 2021;18(1):14. [DOI:10.1186/s12950-021-00275-7] [PMID] []
12. Asgari R, Rezaie J. Differential expression of serum exosomal miRNAs in breast cancer patients and healthy controls. Adv Pharm Bull. 2022;12(4):858-62. [DOI:10.34172/apb.2022.088] [PMID] []
13. Welsh JA, Goberdhan DC, O'Driscoll L, Buzas EI, Di Vizio D, Driedonks TA, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. [DOI:10.1002/jev2.12451] [PMID] []
14. Rai A, Claridge B, Lozano J, Greening DW. The discovery of extracellular vesicles and their emergence as a next-generation therapy. Circ Res. 2024;135(1):198-221. [DOI:10.1161/CIRCRESAHA.123.323054] [PMID]
15. Mashouri L, Yousefi H, Aref AR, Ahadi Am, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1):75. [DOI:10.1186/s12943-019-0991-5] [PMID] []
16. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4(1):27066. [DOI:10.3402/jev.v4.27066] [PMID] []
17. Tóth EÁ, Turiák L, Visnovitz T, Cserép C, Mázló A, Sódar BW, et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J Extracell Vesicles. 2021;10(11):e12140. [DOI:10.1002/jev2.12140] [PMID] []
18. Wolf M, Poupardin RW, Ebner-Peking P, Andrade AC, Blöchl C, Obermayer A, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J Extracell Vesicles. 2022;11(4):e12207. [DOI:10.1002/jev2.12207] [PMID] []
19. van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-28. [DOI:10.1038/nrm.2017.125] [PMID]
20. Yerneni SS, Solomon T, Smith J, Campbell PG. Radioiodination of extravesicular surface constituents to study the biocorona, cell trafficking and storage stability of extracellular vesicles. Biochim Biophys Acta Gen Subj. 2022;1866(2):130069. [DOI:10.1016/j.bbagen.2021.130069] [PMID]
21. Cruz L, Arevalo Romero JA, Brandão Prado M, Santos TG, Hohmuth Lopes M. Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Stem Cell Rev Rep. 2017;14(2):262-76. [DOI:10.1007/s12015-017-9776-7] [PMID]
22. Midekessa G, Godakumara K, Ord J, Viil J, Lättekivi F, Dissanayake K, et al. Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS Omega. 2020;5(27):16701-10. [DOI:10.1021/acsomega.0c01582] [PMID] []
23. Rupert DLM, Claudio V, Lässer C, Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta Gen Subj. 2017;1861(1, Part A):3164-79. [DOI:10.1016/j.bbagen.2016.07.028] [PMID]
24. Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep. 2020;10(1):2064. [DOI:10.1038/s41598-020-58506-5] [PMID] []
25. Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles. 2022;11(10):e12260. [DOI:10.1002/jev2.12260] [PMID] []
26. Stace CL, Ktistakis NT. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim Biophys Acta. 2006;1761(8):913-26. [DOI:10.1016/j.bbalip.2006.03.006] [PMID]
27. Bourgot I, Primac I, Louis T, Noël A, Maquoi E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front Oncol. 2020;10:1488. [DOI:10.3389/fonc.2020.01488] [PMID] []
28. Jankovičová J, Sečová P, Michalková K, Antalíková J. Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci. 2020;21(20):7568. [DOI:10.3390/ijms21207568] [PMID] []
29. Meneghetti MCZ, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. Heparan sulfate and heparin interactions with proteins. J R Soc Interface. 2015;12(110):0589. [DOI:10.1098/rsif.2015.0589] [PMID] []
30. Zollinger AJ, Smith ML. Fibronectin, the extracellular glue. Matrix Biol. 2017;60-61:27-37. [DOI:10.1016/j.matbio.2016.07.011] [PMID]
31. Ye H, Li B, Subramanian V, Choi B-H, Liang Y, Harikishore A, et al. NMR solution structure of C2 domain of MFG-E8 and insights into its molecular recognition with phosphatidylserine. Biochim Biophys Acta. 2013;1828(3):1083-93. [DOI:10.1016/j.bbamem.2012.12.009] [PMID]
32. Malonga H, Neault JF, Arakawa H, Tajmir-Riahi HA. DNA interaction with human serum albumin studied by affinity capillary electrophoresis and FTIR spectroscopy. DNA Cell Biol. 2006;25(1):63-8. [DOI:10.1089/dna.2006.25.63] [PMID]
33. Tutanov O, Shtam T, Grigor'eva A, Tupikin A, Tsentalovich Y, Tamkovich S. Blood Plasma Exosomes Contain Circulating DNA in Their Crown. Diagnostics (Basel). 2022;12(4):854. [DOI:10.3390/diagnostics12040854] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb