Volume 36, Issue 3 (9-2025)                   Studies in Medical Sciences 2025, 36(3): 175-185 | Back to browse issues page

Ethics code: IR.UMA.REC.1402.051


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aali S, Rezazade F, Sheykhalizade H, Safajou H, Imani bruoj S. Effects of an Eight-Week Neuromuscular Conditioning Program on Ground-Reaction Kinetics During Gait in Individuals With Piriformis Syndrome. Studies in Medical Sciences 2025; 36 (3) :175-185
URL: http://umj.umsu.ac.ir/article-1-6462-en.html
Department of Sport Biomechanics, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran , rezazade.farhad@gmail.com
Abstract:   (61 Views)
Abstract
Background:
Piriformis syndrome can lead to excessive internal rotation or adduction of the hip joint, thereby disrupting normal gait cycles. Accordingly, this study aimed to examine the effects of neuromuscular exercises on the frequency spectrum of ground reaction forces during walking in individuals with piriformis syndrome.

Methods:
This quasi-experimental study was conducted under controlled laboratory conditions. Based on calculations using G*Power software, the required sample size for each group was determined to be 15 participants. The study population comprised men aged 35–45 years who were clinically diagnosed with piriformis syndrome. Ground reaction forces were recorded during heel-to-toe walking at a self-selected speed. The time-domain signals were transformed into the frequency domain using MATLAB software. Statistical analysis was performed using a two-way repeated-measures ANOVA in SPSS version 26.

Results:
A significant main effect of time on cumulative signal power up to 99.5% was observed in the medial–lateral (p < 0.001; η² = 0.874), anterior–posterior (p < 0.001; η² = 0.675), and free moment (p < 0.001; η² = 0.601) components of the ground reaction force. A significant group effect was found for the median frequency of the vertical component (p = 0.048; η² = 0.199) and the free moment (p = 0.028; η² = 0.240). Furthermore, a significant time × group interaction effect on cumulative signal power up to 99.5% was identified in the anterior–posterior component (p = 0.010; η² = 0.312).

Conclusion:
Neuromuscular exercises improved the spectral characteristics of ground reaction forces across the vertical, anterior–posterior, medial–lateral, and free moment dimensions in individuals with piriformis syndrome. Increases in median frequency, 99.5% frequency, and bandwidth reflected enhanced signal organization and more efficient neuromuscular control, thereby reducing reliance on compensatory movement strategies.
Full-Text [PDF 734 kb]   (31 Downloads)    
Type of Study: Research | Subject: General

References
1. Jacquelin Perry M. Gait Analysis: Normal and Pathological Function. J Sports Sci Med. 2010;9(2):353. [] [PMCID]
2. Pierce CM, LaPrade RF, Wahoff M, O'Brien L, Philippon MJ. Ice hockey goaltender rehabilitation, including on-ice progression, after arthroscopic hip surgery for femoroacetabular impingement. J Orthop Sports Phys Ther. 2013;43(3):129-41. doi: 10.2519/jospt.2013.4430 [DOI:10.2519/jospt.2013.4430] [PMID]
3. Menz HB, Lord SR. Foot problems, functional impairment, and falls in older people. J Am Podiatr Med Assoc. 1999;89(9):458-67. doi: 10.7547/87507315-89-9-458 [DOI:10.7547/87507315-89-9-458] [PMID]
4. Pećina M. Contribution to the etiological explanation of the piriformis syndrome. Acta Anat (Basel). 1979;105(2):181-7. doi: 10.1159/000145121 [DOI:10.1159/000145121]
5. Durrani Z, Winnie AP. Piriformis muscle syndrome: an underdiagnosed cause of sciatica. J Pain Symptom Manage. 1991;6(6):374-9. doi: 10.1016/0885-3924(91)90029-4 [DOI:10.1016/0885-3924(91)90029-4] [PMID]
6. Barzu M. Diagnostic methods in piriformis syndrome. Timisoara Physical Education and Rehabilitation Journal. 2013;6(11):22. doi: 10.2478/tperj-2013-0012 [DOI:10.2478/tperj-2013-0012]
7. Broadhurst NA, Simmons DN, Bond MJ. Piriformis syndrome: correlation of muscle morphology with symptoms and signs. Arch Phys Med Rehabil. 2004;85(12):2036-9. doi: 10.1016/j.apmr.2004.02.017 [DOI:10.1016/j.apmr.2004.02.017] [PMID]
8. Dey S, Das S, Bhattacharyya P. Piriformis syndrome: a clinical review. Journal of Evolution of Medical and Dental Sciences. 2013;2(15):2502-8. doi: 10.14260/jemds/568 [DOI:10.14260/jemds/568]
9. Fishman LM, Dombi GW, Michaelsen C, Ringel S, Rozbruch J, Rosner B, et al. Piriformis syndrome: diagnosis, treatment, and outcome-a 10-year study. Arch Phys Med Rehabil. 2002;83(3):295-301. doi: 10.1053/apmr.2002.30622 [DOI:10.1053/apmr.2002.30622] [PMID]
10. Brochado JF, Pereira J. Behind the Pain: Understanding and Treating Piriformis Syndrome. Cureus. 2024;16(10). doi: 10.7759/cureus.70750 [DOI:10.7759/cureus.70750]
11. Doosti Irani R, Golpayegani M, Faraji F. The Effect of Core Stability Exercises on Pain and Inflammation of Patients With Piriformis Syndrome. Journal of Arak University of Medical Sciences. 2022;25(2):310-23. doi: 10.32598/jams.25.2.6890.1 [DOI:10.32598/jams.25.2.6890.1]
12. Danazumi MS, Yakasai AM, Ibrahim AA, Shehu UT, Ibrahim SU. Effect of integrated neuromuscular inhibition technique compared with positional release technique in the management of piriformis syndrome. J Osteopath Med. 2021;121(8):693-703. doi: 10.1515/jom-2020-0327 [DOI:10.1515/jom-2020-0327] [PMID]
13. Miller TA, White K, Ross D. The diagnosis and management of Piriformis Syndrome: myths and facts. Can J Neurol Sci. 2012;39(5):577-83. doi: 10.1017/S0317167100015298 [DOI:10.1017/S0317167100015298] [PMID]
14. Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(1):216-24. doi: 10.1177/0363546512459638 [DOI:10.1177/0363546512459638] [PMID] []
15. Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573-8. doi: 10.3928/0147-7447-20000601-15 [DOI:10.3928/0147-7447-20000601-15] [PMID]
16. Fu AS, Hui-Chan CW. Ankle joint proprioception and postural control in basketball players with bilateral ankle sprains. Am J Sports Med. 2005;33(8):1174-82. doi: 10.3928/0147-7447-20000601-15 [DOI:10.3928/0147-7447-20000601-15] [PMID]
17. Chaitow L, DeLany J. Clinical Application of Neuromuscular Techniques, Volume 2 E-Book: Clinical Application of Neuromuscular Techniques, Volume 2 E-Book: Elsevier Health Sciences; 2011. [GOOGLE SCHOLAR]
18. Mujawar J, Chotai K, Kanase S, Jadhav A. Effectiveness of neuromuscular therapy and active release technique in young adults with piriformis tightness. Indian J Physiother Occup Ther. 2019;13:212-7. doi: 10.5958/0973-5674.2019.00163.1 [DOI:10.5958/0973-5674.2019.00163.1]
19. Lin J-Z, Lin Y-A, Tai W-H, Chen C-Y. Influence of landing in neuromuscular control and ground reaction force with ankle instability: A narrative review. Bioengineering(Basel). 2022;9(2):68. doi: 10.3390/bioengineering9020068 [DOI:10.3390/bioengineering9020068] [PMID] []
20. Wu J, Beerse M, Ajisafe T. Frequency domain analysis of ground reaction force in preadolescents with and without Down syndrome. Res Dev Disabil. 2014;35(6):1244-51. doi: 10.1016/j.ridd.2014.03.019 [DOI:10.1016/j.ridd.2014.03.019] [PMID]
21. Gruber AH, Edwards WB, Hamill J, Derrick TR, Boyer KA. A comparison of the ground reaction force frequency content during rearfoot and non-rearfoot running patterns. Gait Posture. 2017;56:54-9. doi: 10.1016/j.gaitpost.2017.04.037 [DOI:10.1016/j.gaitpost.2017.04.037] [PMID]
22. McGrath D, Judkins TN, Pipinos II, Johanning JM, Myers SA. Peripheral arterial disease affects the frequency response of ground reaction forces during walking. Clin Biomech(Bristol). 2012;27(10):1058-63. doi: 10.1016/j.clinbiomech.2012.08.004 [DOI:10.1016/j.clinbiomech.2012.08.004] [PMID] []
23. Wurdeman SR, Huisinga JM, Filipi M, Stergiou N. Multiple sclerosis affects the frequency content in the vertical ground reaction forces during walking. Clin Biomech(Bristol). 2011;26(2):207-12. doi: 10.1016/j.clinbiomech.2010.09.021 [DOI:10.1016/j.clinbiomech.2010.09.021] [PMID] []
24. Siraj SA, Dadgal R. Physiotherapy for piriformis syndrome using sciatic nerve mobilization and piriformis release. Cureus. 2022;14(12). doi: 10.7759/cureus.32952 [DOI:10.7759/cureus.32952]
25. Kirschner JS, Foye PM, Cole JL. Piriformis syndrome, diagnosis and treatment. Muscle Nerve. 2009;40(1):10-8. doi: 10.1002/mus.21318 [DOI:10.1002/mus.21318] [PMID]
26. Ismail ET, Abbas T, Javad S, Reza S. Gait analysis of patients with piriformis muscle syndrome compared to healthy controls. Musculoskelet Sci Pract. 2020;48:102165. doi: 10.1016/j.msksp.2020.102165 [DOI:10.1016/j.msksp.2020.102165] [PMID]
27. Kirch N, Rana MV. Piriformis syndrome. Practical Chronic Pain Management: A Case-Based Approach. 2020:293-9. doi: 10.1007/978-3-030-46675-6 [DOI:10.1007/978-3-030-46675-6]
28. Shah SS, Consuegra JM, Subhawong TK, Urakov TM, Manzano GR. Epidemiology and etiology of secondary piriformis syndrome: a single-institution retrospective study. J Clin Neurosci. 2019;59:209-12. doi: 10.1016/j.jocn.2018.10.069 [DOI:10.1016/j.jocn.2018.10.069] [PMID]
29. Fishman LM, Zybert PA. Electrophysiologic evidence of piriformis syndrome. Arch Phys Med Rehabil. 1992;73(4):359-64. doi: 10.1016/0003-9993(92)90010-T [DOI:10.1016/0003-9993(92)90010-T] [PMID]
30. Golchini A, Rahnama N, Lotfi-Foroushani M. Effect of systematic corrective exercises on the static and dynamic balance of patients with pronation distortion syndrome: A randomized [GOOGLE SCHOLAR]
31. controlled clinical trial study. Int J Prev Med. 2021;12(1):129. doi: 10.4103/ijpvm.IJPVM_303_19 [DOI:10.4103/ijpvm.IJPVM_303_19] [PMID] []
32. Mokhtaran S, Piri H, Sheikhhoseini R, Salsali M. Comparing two corrective exercise approaches for body image and upper-quadrant posture in schoolgirls with hyperkyphosis. Sci Rep. 2025;15(1):3882. doi: 10.1038/s41598-025-85665-0 [DOI:10.1038/s41598-025-85665-0] [PMID] []
33. Bagherian S, Rahnama N, Wikstrom E, Rostami F. P5 Effect of nasm corrective exercises on functional movement patterns, sensorimotor function, & fatigue in collegiate athletes with functional ankle instability. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; 2017. doi: 10.1136/bjsports-2017-anklesymp.37 [DOI:10.1136/bjsports-2017-anklesymp.37]
34. Fasihi, A., Siahkouhian, M., Sheikhalizade, H., & Jafarnezhadgero, A. (2020). Effect of fatigue at the heart rate deflection point on the frequency components of ground reaction forces during walking in individuals with pronated feet. The Scientific Journal of Rehabilitation Medicine, 9(2), 228-38. doi:10.22037/jrm.2019.111901.2122 [GOOGLE SCHOLAR]
35. Schneider E, Chao E. Fourier analysis of ground reaction forces in normals and patients with knee joint disease. J Biomech. 1983;16(8):591-601. doi: 10.1016/0021-9290(83)90109-4 [DOI:10.1016/0021-9290(83)90109-4] [PMID]
36. Stergiou N, Giakas G, Byrne JE, Pomeroy V. Frequency domain characteristics of ground reaction forces during walking of young and elderly females. Clin Biomech(Bristol). 2002;17(8):615-7. doi: 10.1016/S0268-0033(02)00072-4 [DOI:10.1016/S0268-0033(02)00072-4] [PMID]
37. James, E., Nichols, S., Goodall, S., Hicks, K. M., & O'doherty, A. F. (2021). The influence of resistance training on neuromuscular function in middle-aged and older adults: A systematic review and meta-analysis of randomised controlled trials. Exp Gerontol. 149, 111320. doi: 10.1016/j.exger.2021.111320 [DOI:10.1016/j.exger.2021.111320] [PMID]
38. Sorvisto J. Ground reaction forces, neuromuscular and metabolic responses to combined strength and endurance loading in recreational endurance athletes. 2015. [GOOGLE SCHOLAR]
39. White R, Agouris I, Fletcher E. Harmonic analysis of force platform data in normal and cerebral palsy gait. Clin Biomech(Bristol). 2005;20(5):508-16. doi: 10.1016/j.clinbiomech.2005.01.001 [DOI:10.1016/j.clinbiomech.2005.01.001] [PMID]
40. Giakas G, Baltzopoulos V. Time and frequency domain analysis of ground reaction forces during walking: an investigation of variability and symmetry. Gait & Posture. 1997;5(3):189-97. doi: 10.1016/S0966-6362(96)01083-1 [DOI:10.1016/S0966-6362(96)01083-1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.