1. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell stem cell. 2020;27(4):523-31. [
DOI:10.1016/j.stem.2020.09.014] [
PMID]
2. Vanholder R, Domínguez-Gil B, Busic M, Cortez-Pinto H, Craig JC, Jager KJ, et al. Organ donation and transplantation: a multi-stakeholder call to action. Nature Reviews Nephrology. 2021;17(8):554-68. [
DOI:10.1038/s41581-021-00425-3] [
PMID] [
]
3. Granot N, Storb R. History of hematopoietic cell transplantation: challenges and progress. Haematologica. 2020;105(12):2716. [
DOI:10.3324/haematol.2019.245688] [
PMID] [
]
4. Sureda A, Kröger N, Apperley J, Gratwohl A. The EBMT: history, present, and future. The EBMT Handbook: Hematopoietic Cell Transplantation and Cellular Therapies. 2024:11-9. [
DOI:10.1007/978-3-031-44080-9_2] [
PMID]
5. Steensma DP, Kyle RA, editors. James Till and Ernest McCulloch: Hematopoietic Stem Cell Discoverers. Mayo Clinic Proceedings; 2021: Elsevier, Inc. [
DOI:10.1016/j.mayocp.2021.01.016] [
PMID]
6. O'Reilly RJ. Profile of a pioneer: Robert A. Good. Transplantation and Cellular Therapy, Official Publication of the American Society for Transplantation and Cellular Therapy. 2024;30(5):457-61. [
DOI:10.1016/j.jtct.2024.03.008] [
PMID]
7. Thomson JA. Human embryonic stem cells. 2001. [
DOI:10.7551/mitpress/3595.003.0006]
8. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet. 2004;363(9419):1439-41. [
DOI:10.1016/S0140-6736(04)16104-7] [
PMID]
9. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 2006;126(4):663-76. [
DOI:10.1016/j.cell.2006.07.024] [
PMID]
10. institute nc. CAR T-Cell Therapy Approved for Some Children and Young Adults with Leukemia 2017 [Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2017/tisagenlecleucel-fda-childhood-leukemia#:~:text=On%20August%2030%2C%20the%20Food,therapy%20to%20receive%20FDA%20approval.
11. institute nc. Carvykti Approval Marks Second CAR T-Cell Therapy for Multiple Myeloma 2022 [Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2022/fda-carvykti-multiple-myeloma.
12. Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery. 2022;21(9):655-75. [
DOI:10.1038/s41573-022-00476-6] [
PMID] [
]
13. Eckman N, Nejatfard A, Cavet R, Grosskopf AK, Appel EA. Biomaterials to enhance adoptive cell therapy. Nature Reviews Bioengineering. 2024;2(5):408-24. [
DOI:10.1038/s44222-023-00148-z]
14. Mousaei Ghasroldasht M, Seok J, Park H-S, Liakath Ali FB, Al-Hendy A. Stem cell therapy: from idea to clinical practice. International journal of molecular sciences. 2022;23(5):2850. [
DOI:10.3390/ijms23052850] [
PMID] [
]
15. Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regenerative therapy. 2020;14:136-53. [
DOI:10.1016/j.reth.2020.01.004] [
PMID] [
]
16. Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nature Reviews Neuroscience. 2020;21(2):103-15. [
DOI:10.1038/s41583-019-0257-7] [
PMID]
17. Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. Advanced therapeutics. 2020;3(3):1900182. [
DOI:10.1002/adtp.201900182] [
PMID] [
]
18. Hulme CH, Perry J, McCarthy HS, Wright KT, Snow M, Mennan C, et al. Cell therapy for cartilage repair. Emerging topics in life sciences. 2021;5(4):575-89. [
DOI:10.1042/ETLS20210015] [
PMID] [
]
19. Riester O, Borgolte M, Csuk R, Deigner H-P. Challenges in bone tissue regeneration: stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution. International journal of molecular sciences. 2020;22(1):192. [
DOI:10.3390/ijms22010192] [
PMID] [
]
20. Shafiei-Irannejad V, Zarghami N, Samadi N, Akbarzadeh A. EXAMINING THE EFFECT OF METFORMIN ON ENHANCING THE SENSITIVITY OF CISPLATIN-RESISTANT OVARIAN CANCER CELLS (A2780/CP). Studies in Medical Sciences. 2024;35(1):1-9. [
DOI:10.61186/umj.35.1.1]
21. Chu D-T, Nguyen TT, Tien NLB, Tran D-K, Jeong J-H, Anh PG, et al. Recent progress of stem cell therapy in cancer treatment: molecular mechanisms and potential applications. Cells. 2020;9(3):563. [
DOI:10.3390/cells9030563] [
PMID] [
]
22. Du B, Qin J, Lin B, Zhang J, Li D, Liu M. CAR-T therapy in solid tumors. Cancer Cell. 2025;43(4):665-79. [
DOI:10.1016/j.ccell.2025.03.019] [
PMID]
23. Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nature reviews Clinical oncology. 2023;20(6):359-71. [
DOI:10.1038/s41571-023-00754-1] [
PMID] [
]
24. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nature Reviews Cancer. 2021;21(3):145-61. [
DOI:10.1038/s41568-020-00323-z] [
PMID] [
]
25. Kumar A, Watkins R, Vilgelm AE. Cell therapy with TILs: training and taming T cells to fight cancer. Frontiers in immunology. 2021;12:690499. [
DOI:10.3389/fimmu.2021.690499] [
PMID] [
]
26. Granhøj JS, Witness Præst Jensen A, Presti M, Met Ö, Svane IM, Donia M. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opinion on Biological Therapy. 2022;22(5):627-41. [
DOI:10.1080/14712598.2022.2064711] [
PMID]
27. Zhao Y, Deng J, Rao S, Guo S, Shen J, Du F, et al. Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: progressions and challenges. Cancers. 2022;14(17):4160. [
DOI:10.3390/cancers14174160] [
PMID] [
]
28. Del Buono MG, Moroni F, Montone RA, Azzalini L, Sanna T, Abbate A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Current Cardiology Reports. 2022;24(10):1505-15. [
DOI:10.1007/s11886-022-01766-6] [
PMID] [
]
29. Papastamos C, Antonopoulos AS, Simantiris S, Koumallos N, Theofilis P, Sagris M, et al. Stem cell-based therapies in cardiovascular diseases: From pathophysiology to clinical outcomes. Current Pharmaceutical Design. 2023;29(35):2795-801. [
DOI:10.2174/1381612829666230828102130] [
PMID]
30. Tsai I-T, Sun C-K. Stem cell therapy against ischemic heart disease. International Journal of Molecular Sciences. 2024;25(7):3778. [
DOI:10.3390/ijms25073778] [
PMID] [
]
31. Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Afolabi S, et al. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. Heart Failure Reviews. 2024;29(3):573-98. [
DOI:10.1007/s10741-023-10351-0] [
PMID]
32. Maldonado VV, Patel NH, Smith EE, Barnes CL, Gustafson MP, Rao RR, et al. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. Journal of biological engineering. 2023;17(1):44. [
DOI:10.1186/s13036-023-00361-9] [
PMID] [
]
33. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of tissue engineering and regenerative medicine. 2019;13(9):1738-55. [
DOI:10.1002/term.2914] [
PMID]
34. Haghikia A, Hegelmaier T, Wolleschak D, Böttcher M, Desel C, Borie D, et al. Anti-CD19 CAR T cells for refractory myasthenia gravis. The Lancet Neurology. 2023;22(12):1104-5. [
DOI:10.1016/S1474-4422(23)00375-7] [
PMID]
35. Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, et al. The emerging role of regulatory cell-based therapy in autoimmune disease. Frontiers in Immunology. 2022;13:1075813. [
DOI:10.3389/fimmu.2022.1075813] [
PMID] [
]
36. Rawat S, Gupta S, Mohanty S. Mesenchymal stem cells modulate the immune system in developing therapeutic interventions. Immune response activation and immunomodulation. 2019;103. [
DOI:10.5772/intechopen.80772]
37. Genchi A, Brambilla E, Sangalli F, Radaelli M, Bacigaluppi M, Furlan R, et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study. Nature Medicine. 2023;29(1):75-85. [
DOI:10.1038/s41591-022-02097-3] [
PMID] [
]
38. Sackett SD, Tremmel DM, Feeney AK, Mitchell SA, Odorico JS. Human embryonic stem cells (hESC) as a source of insulin-producing cells. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. 2020:359-79. [
DOI:10.1016/B978-0-12-814831-0.00027-0]
39. Chhetri D, Amarnath RN, Samal S, Palaniyandi K, Gnanasampanthapandian D. Diabetes mellitus and iPSC-based therapy. Advances in Diabetes Research and Management: Springer; 2023. p. 225-46. [
DOI:10.1007/978-981-19-0027-3_10]
40. Narayan G, Ronima K, Thummer RP. Direct Reprogramming of Somatic Cells into Induced β-Cells: An Overview. Cell Biology and Translational Medicine, Volume 19: Perspectives in Diverse Human Diseases and Their Therapeutic Options. 2022:171-89. [
DOI:10.1007/5584_2022_756] [
PMID]
41. Schett G, Mueller F, Taubmann J, Mackensen A, Wang W, Furie RA, et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nature Reviews Rheumatology. 2024;20(9):531-44. [
DOI:10.1038/s41584-024-01139-z] [
PMID]
42. Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood, The Journal of the American Society of Hematology. 2011;117(10):2791-9. [
DOI:10.1182/blood-2010-09-309591] [
PMID] [
]
43. Rothemejer FH, Lauritsen NP, Søgaard OS, Tolstrup M. Strategies for enhancing CAR T cell expansion and persistence in HIV infection. Frontiers in Immunology. 2023;14:1253395. [
DOI:10.3389/fimmu.2023.1253395] [
PMID] [
]
44. York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving strategies to eliminate the CD4 T cells HIV viral reservoir via CAR T cell immunotherapy. Frontiers in Immunology. 2022;13:873701. [
DOI:10.3389/fimmu.2022.873701] [
PMID] [
]
45. Muvarak N, Li H, Lahusen T, Galvin JA, Kumar PN, Pauza CD, et al. Safety and durability of AGT103-T autologous T cell therapy for HIV infection in a Phase 1 trial. Frontiers in Medicine. 2022;9:1044713. [
DOI:10.3389/fmed.2022.1044713] [
PMID] [
]
46. Ferrari C. HBV and the immune response. liver intyernational. 2015. [
GOOGLE SCHOLAR]
47. Li Y-H, Xu Y, Wu H-M, Yang J, Yang L-H, Yue-Meng W. Umbilical cord-derived mesenchymal stem cell transplantation in hepatitis B virus related acute-on-chronic liver failure treated with plasma exchange and entecavir: a 24-month prospective study. Stem Cell Reviews and Reports. 2016;12(6):645-53. [
DOI:10.1007/s12015-016-9683-3] [
PMID]
48. Lin Bl, Chen Jf, Qiu Wh, Wang Kw, Xie Dy, Chen Xy, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute‐on‐chronic liver failure: a randomized controlled trial. Hepatology. 2017;66(1):209-19. [
DOI:10.1002/hep.29189] [
PMID]
49. Xu Y, Zhang Q. Clinical application of stem cells in liver diseases: from bench to bedside. Stem cells and cancer in hepatology. 2018:317-46. [
DOI:10.1016/B978-0-12-812301-0.00015-3]
50. Zhu B, You S, Rong Y, Yu Q, Lv S, Song F, et al. A novel stem cell therapy for hepatitis B virus-related acute-on-chronic liver failure. Brazilian Journal of Medical and Biological Research. 2020;53(11):e9728. [
DOI:10.1590/1414-431x20209728] [
PMID] [
]
51. Bohne F, Chmielewski M, Ebert G, Wiegmann K, Kürschner T, Schulze A, et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology. 2008;134(1):239-47. [
DOI:10.1053/j.gastro.2007.11.002] [
PMID]
52. Zoulim F, Lebossé F, Levrero M. Current treatments for chronic hepatitis B virus infections. Current opinion in Virology. 2016;18:109-16. [
DOI:10.1016/j.coviro.2016.06.004]
53. Bertoletti A, Tan AT. HBV as a target for CAR or TCR-T cell therapy. Current Opinion in Immunology. 2020;66:35-41. [
DOI:10.1016/j.coi.2020.04.003] [
PMID]
54. Abramov AY, Bachurin SO. Neurodegenerative disorders-Searching for targets and new ways of diseases treatment. Medicinal Research Reviews. 2021;41(5). [
DOI:10.1002/med.21794] [
PMID]
55. Rahbarghazi R, Karimipour M. Stimulation And Recruitment Of Hippocampus Neural Stem Cells As A Novel And Efficient Therapeutic Strategy In The Treatment Of Alzheimer'S Disease: A Review Study. 2021. [
GOOGLE SCHOLAR]
56. Julia T. Human iPSC application in Alzheimer's disease and Tau-related neurodegenerative diseases. Neuroscience letters. 2019;699:31-40. [
DOI:10.1016/j.neulet.2019.01.043] [
PMID] [
]
57. Campos HC, Ribeiro DE, Hashiguchi D, Hukuda DY, Gimenes C, Romariz SA, et al. Distinct effects of the hippocampal transplantation of neural and mesenchymal stem cells in a transgenic model of Alzheimer's disease. Stem Cell Reviews and Reports. 2022;18(2):781-91. [
DOI:10.1007/s12015-021-10321-9] [
PMID]
58. Ahmadvand Koohsari S, Absalan A, Azadi D. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles attenuate experimental autoimmune encephalomyelitis via regulating pro and anti-inflammatory cytokines. Scientific Reports. 2021;11(1):11658. [
DOI:10.1038/s41598-021-91291-3] [
PMID] [
]
59. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nature reviews Disease primers. 2017;3(1):1-21. [
DOI:10.1038/nrdp.2017.13] [
PMID]
60. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. Jama. 2020;323(6):548-60. [
DOI:10.1001/jama.2019.22360]
61. Stoker TB. Stem cell treatments for Parkinson's disease. Exon Publications. 2018:161-75. [
DOI:10.15586/codonpublications.parkinsonsdisease.2018.ch9]
62. Wang F, Sun Z, Peng D, Gianchandani S, Le W, Boltze J, et al. Cell-therapy for Parkinson's disease: A systematic review and meta-analysis. Journal of translational medicine. 2023;21(1):601. [
DOI:10.1186/s12967-023-04484-x] [
]
63. Sadeghpour S, Ghasemzadeh A, Nouri M, Danaii S, Ghasemnejad Berenji H. Effects of Antioxidative treatments on sperm DNA fragmentation and pregnancy results in IUI. Studies in Medical Sciences. 2015;25(12):1050-9. [
URL]
64. Saha S, Roy P, Corbitt C, Kakar SS. Application of stem cell therapy for infertility. Cells. 2021;10(7):1613. [
DOI:10.3390/cells10071613] [
PMID] [
]
65. Wu J-X, Xia T, She L-P, Lin S, Luo X-M. Stem cell therapies for human infertility: advantages and challenges. Cell Transplantation. 2022;31:09636897221083252. [
DOI:10.1177/09636897221083252] [
PMID] [
]
66. Mahabadi JA, Sabzalipour H, Bafrani HH, Gheibi Hayat SM, Nikzad H. Application of induced pluripotent stem cell and embryonic stem cell technology to the study of male infertility. Journal of cellular physiology. 2018;233(11):8441-9. [
DOI:10.1002/jcp.26757] [
PMID]
67. Gauthier-Fisher A, Ho MS, Ho MS, Nir D, Librach CL. Applications for induced pluripotent stem cells in reproductive medicine. Current Topics in iPSCs Technology: Elsevier; 2022. p. 225-73. [
DOI:10.1016/B978-0-323-99892-5.00006-2]
68. Ghajari G, Heydari A, Ghorbani M. Mesenchymal stem cell-based therapy and female infertility: limitations and advances. Current Stem Cell Research & Therapy. 2023;18(3):322-38. [
DOI:10.2174/1574888X17666220511142930] [
PMID]
69. Lee H, Son M-Y. Current challenges associated with the use of human induced pluripotent stem cell-derived organoids in regenerative medicine. International Journal of Stem Cells. 2021;14(1):9-20.
https://doi.org/10.15283/ijsc20140 [
DOI:10.15283/ijsc.2011.4.1.9] [
PMID] [
]
70. Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomaterials science. 2024;12(6):1425-48. [
DOI:10.1039/D3BM01934A] [
PMID]
71. Ahmed E, Saleh T, Xu M. Recellularization of native tissue derived acellular scaffolds with mesenchymal stem cells. Cells. 2021;10(7):1787. [
DOI:10.3390/cells10071787] [
]
72. Iwasawa K, Takebe T. Organogenesis in vitro. Current opinion in cell biology. 2021;73:84-91. [
DOI:10.1016/j.ceb.2021.06.007] [
PMID] [
]
73. Xuan Y, Petersen B, Liu P. Human and pig pluripotent stem cells: From cellular products to organogenesis and beyond. Cells. 2023;12(16):2075. [
DOI:10.3390/cells12162075] [
]
74. Jackson Z, Roe A, Sharma AA, Lopes FBTP, Talla A, Kleinsorge-Block S, et al. Automated manufacture of autologous CD19 CAR-T cells for treatment of non-Hodgkin lymphoma. Frontiers in immunology. 2020;11:1941. [
DOI:10.3389/fimmu.2020.01941] [
PMID] [
]
75. Baird JH, Frank MJ, Craig J, Patel S, Spiegel JY, Sahaf B, et al. CD22-directed CAR T-cell therapy induces complete remissions in CD19-directed CAR-refractory large B-cell lymphoma. Blood, The Journal of the American Society of Hematology. 2021;137(17):2321-5. [
DOI:10.1182/blood.2020009432] [
PMID] [
]
76. Abou-el-Enein M, Elsallab M, Feldman SA, Fesnak AD, Heslop HE, Marks P, et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood cancer discovery. 2021;2(5):408-22. [
DOI:10.1158/2643-3230.BCD-21-0084] [
PMID] [
]
77. Wang G, Wu H-L, Liu Y-P, Yan D-Q, Yuan Z-L, Chen L, et al. Pre-clinical study of human umbilical cord mesenchymal stem cell transplantation for the treatment of traumatic brain injury: safety evaluation from immunogenic and oncogenic perspectives. Neural Regeneration Research. 2022;17(2):354-61. [
DOI:10.4103/1673-5374.317985] [
]
78. Novartis. Important Safety Information for KYMRIAH® (tisagenlecleucel) 2024 [Available from: https://www.kymriah-hcp.com/acute-lymphoblastic-leukemia-children/safety-profile. [
URL]
79. Kite Presents New Real-World Data Supporting Use of Potentially Curative Yescarta® in Outpatient Care Setting for Patients with Relapsed/Refractory Large B-Cell Lymphoma at ASCO 2025 2025 [Available from: https://www.kitepharma.com/news/press-releases/2025/6/kite-presents-new-real-world-data-supporting-use-of-potentially-curative-yescarta-in-outpatient-care-setting-for-patients-with-relapsedrefractory-la#:~:text=TECARTUS%20REMS%20Program.-,CYTOKINE%20RELEASE%20SYNDROME%20(CRS),system1)%20CRS%20in%209%25. [
URL]
80. Wang LLW, Janes ME, Kumbhojkar N, Kapate N, Clegg JR, Prakash S, et al. Cell therapies in the clinic. Bioengineering & translational medicine. 2021;6(2):e10214. [
DOI:10.1002/btm2.10214] [
]
81. Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, et al. Optimization of mesenchymal stromal cell (MSC) manufacturing processes for a better therapeutic outcome. Frontiers in Immunology. 2022;13:918565. [
DOI:10.3389/fimmu.2022.918565] [
PMID] [
]
82. Hoang DM, Pham PT, Bach TQ, Ngo AT, Nguyen QT, Phan TT, et al. Stem cell-based therapy for human diseases. Signal transduction and targeted therapy. 2022;7(1):272. [
DOI:10.1038/s41392-022-01134-4] [
PMID] [
]
83. Mo F, Watanabe N, McKenna MK, Hicks MJ, Srinivasan M, Gomes-Silva D, et al. Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nature biotechnology. 2021;39(1):56-63. [
DOI:10.1038/s41587-020-0601-5] [
PMID] [
]
84. Berrien-Elliott MM, Becker-Hapak M, Cashen AF, Jacobs M, Wong P, Foster M, et al. Systemic IL-15 promotes allogeneic cell rejection in patients treated with natural killer cell adoptive therapy. Blood, The Journal of the American Society of Hematology. 2022;139(8):1177-83. [
DOI:10.1182/blood.2021011532] [
PMID] [
]
85. Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell stem cell. 2021;28(10):1708-25. [
DOI:10.1016/j.stem.2021.09.006] [
PMID]
86. Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cellular & Molecular Immunology. 2021;18(5):1085-95. [
DOI:10.1038/s41423-021-00655-2] [
PMID] [
]
87. El-Kadiry AE-H, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Frontiers in Medicine. 2021;8:756029. [
DOI:10.3389/fmed.2021.756029] [
PMID] [
]
88. Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: From physiology to therapeutics. Stem cells. 2020;38(10):1241-53. [
DOI:10.1002/stem.3242] [
PMID]
89. Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem cell research & therapy. 2022;13(1):179. [
DOI:10.1186/s13287-022-02858-4] [
PMID] [
]
90. Raffin C, Vo LT, Bluestone JA. Treg cell-based therapies: challenges and perspectives. Nature Reviews Immunology. 2020;20(3):158-72. [
DOI:10.1038/s41577-019-0232-6] [
PMID] [
]
91. Aly RM. Current state of stem cell-based therapies: an overview. Stem cell investigation. 2020;7:8. [
DOI:10.21037/sci-2020-001] [
PMID] [
]
92. Bupha-Intr O, Haeusler G, Chee L, Thursky K, Slavin M, Teh B. CAR-T cell therapy and infection: a review. Expert Review of Anti-Infective Therapy. 2021;19(6):749-58. [
DOI:10.1080/14787210.2021.1855143] [
PMID]
93. Simon Jr CG, Bozenhardt EH, Celluzzi CM, Dobnik D, Grant ML, Lakshmipathy U, et al. Mechanism of action, potency and efficacy: considerations for cell therapies. Journal of translational medicine. 2024;22(1):416. [
DOI:10.1186/s12967-024-05179-7] [
PMID] [
]
94. Balistreri CR, De Falco E, Bordin A, Maslova O, Koliada A, Vaiserman A. Stem cell therapy: old challenges and new solutions. Molecular biology reports. 2020;47(4):3117-31. [
DOI:10.1007/s11033-020-05353-2] [
PMID]
95. Cliff ERS, Kelkar AH, Russler-Germain DA, Tessema FA, Raymakers AJ, Feldman WB, et al. High cost of chimeric antigen receptor T-cells: challenges and solutions. American Society of Clinical Oncology Educational Book. 2023;43:e397912. [
DOI:10.1200/EDBK_397912] [
PMID]
96. Ramamurthy A, Tommasi A, Saha K, editors. Advances in manufacturing chimeric antigen receptor immune cell therapies. Seminars in immunopathology; 2024: Springer. [
DOI:10.1007/s00281-024-01019-4] [
PMID] [
]
97. Delhove J, Osenk I, Prichard I, Donnelley M. Public acceptability of gene therapy and gene editing for human use: a systematic review. Human gene therapy. 2020;31(1-2):20-46. [
DOI:10.1089/hum.2019.197] [
PMID]
98. Cohen T, Tanhehco YC. Effect of temporary storage of cryopreserved cellular therapy products at− 80⁰ celsius on cell recovery and viability. Transfusion and Apheresis Science. 2024;63(6):104007. [
DOI:10.1016/j.transci.2024.104007] [
PMID]
99. Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Veterinary ophthalmology. 2021;24:16-33. [
DOI:10.1111/vop.12858] [
PMID] [
]
100. Wang Z-B, Wang Z-T, Sun Y, Tan L, Yu J-T. The future of stem cell therapies of Alzheimer's disease. Ageing Research Reviews. 2022;80:101655. [
DOI:10.1016/j.arr.2022.101655] [
PMID]
101. Wang S-W, Gao C, Zheng Y-M, Yi L, Lu J-C, Huang X-Y, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular cancer. 2022;21(1):57. [
DOI:10.1186/s12943-022-01518-8] [
PMID] [
]
102. Srinivasan M, Thangaraj SR, Ramasubramanian K, Thangaraj PP, Ramasubramanian KV, Ramasubramanian Sr K. Exploring the current trends of artificial intelligence in stem cell therapy: a systematic review. Cureus. 2021;13(12). [
DOI:10.7759/cureus.20083]