Volume 36, Issue 2 (6-2025)                   Studies in Medical Sciences 2025, 36(2): 114-122 | Back to browse issues page

Ethics code: IR.IAU.PS.REC.1403.159


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi M, Falsifi S, Amini K. Identification of the met Gene and Kinetic Analysis of Methionine Synthesis in Soil Thermophilic Bacilli. Studies in Medical Sciences 2025; 36 (2) :114-122
URL: http://umj.umsu.ac.ir/article-1-6402-en.html
Department of Microbiology, Faculty of Basic Sciences, Medical Sciences Branch, Islamic Azad University, Tehran, Iran , Dr.sfalsafi@gmail.com
Abstract:   (211 Views)
Background Methionine, an essential sulfur-containing amino acid, plays a critical role in detoxification via methylation and must be obtained through the diet, as humans cannot synthesize it. This study aimed to identify the met gene and analyze the kinetics of methionine synthesis in soil-derived thermophilic bacteria.
Methods Two hundred soil samples were collected from tree-adjacent areas along Khordin Boulevard, Tehran. After heat treatment and culturing, isolates underwent microscopic, biochemical, and molecular characterization. DNA was extracted using a specialized kit, and the met gene was identified via multiplex PCR and gel electrophoresis. Gene expression was quantified using quantitative real-time PCR (qRT-PCR) under three temperatures (25°C, 35°C, 45°C) with ammonium nitrate (nitrogen source) and glucose (carbon source). Data were analyzed by one-way ANOVA using SPSS v.22 and reported as mean ± SD at a significance level of p < 0.05.
Results Bacilli accounted for 30% of isolates from Tehran’s urban soil. The met gene was detected in only 6.66% of bacilli. Significant differences in met expression were observed between treated and control groups across all temperatures and nutrient conditions (p < 0.05). The most excellent suppression of met expression occurred at 45°C (2.342-fold decrease), while 25°C showed the least reduction (1.649-fold). Glucose and ammonium nitrate synergistically reduced expression (1.914- and 1.834-fold, respectively).
Conclusion Temperature and carbon/nitrogen sources modulate met gene expression, thereby influencing methionine synthesis in soil bacilli. Optimal suppression occurred at 45°C with a combination of glucose/ammonium nitrate, suggesting environmental regulation of this metabolic pathway. In contrast, the lowest suppression of met expression was observed at 25°C.
Full-Text [PDF 1627 kb]   (100 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

References
1. Tran C, Cock IE, Chen X, Feng Y. Antimicrobial Bacillus: metabolites and their mode of action. Antibiotics. 2022;11(1):88. [DOI:10.3390/antibiotics11010088] [PMID] []
2. Ngalimat MS, Yahaya RSR, Baharudin MMA-a, Yaminudin SM, Karim M, Ahmad SA, Sabri S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms. 2021;9(3):614. [DOI:10.3390/microorganisms9030614] [PMID] []
3. Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19(9):600-14. [DOI:10.1038/s41579-021-00540-9] [PMID]
4. Wang L-T, Lee F-L, Tai C-J, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol. 2007;57(8):1846-50. [DOI:10.1099/ijs.0.64685-0] [PMID]
5. Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol. 2021;41(4):609-27. [DOI:10.1080/07388551.2021.1873239] [PMID]
6. Mari J, Aliyu A, Nasiru S, Muhammad A, Ibrahim A, Magaji H, Bala M. Methionine production and optimization using Bacillus cereus isolated from soil. Scholars International Journal of Biochemistry. 2022;5(7):95-102. [DOI:10.36348/sijb.2022.v05i07.001]
7. Mohanta MK, Islam MS, Haque MF, Saha AK. Isolation and characterization of amino acid producing bacteria from cow dung. Journal of Microbiology and Biomedical Research. 2016;3(2):1-8. [DOI:10.2139/ssrn.3845547]
8. Bateman A, Roland D, Sr, Bryant M. Optimal methionine+ cysteine/lysine ratio for first cycle phase 1 commercial leghorns. Int J Poult Sci. 2008;7(10):932-9. [DOI:10.3923/ijps.2008.932.939]
9. Bhanja S, Sudhagar M, Goel A, Pandey N, Mehra M, Agarwal S, Mandal A. Differential expression of growth and immunity related genes influenced by in ovo supplementation of amino acids in broiler chickens. Czech J Anim Sci. 2014;59(9):399-408. [DOI:10.17221/7651-CJAS]
10. Weissbach H, Brot N. Regulation of methionine synthesis in Escherichia coli. Mol Microbiol. 1991;5(7):1593-7. [DOI:10.1111/j.1365-2958.1991.tb01905.x] [PMID]
11. Usuda D, Tanaka R, Suzuki M, Shimozawa S, Takano H, Hotchi Y, et al. Obligate aerobic, gram-positive, weak acid-fast, nonmotile bacilli, Tsukamurella tyrosinosolvens: Minireview of a rare opportunistic pathogen. World J Clin Cases. 2022;10(24):8443. [DOI:10.12998/wjcc.v10.i24.8443] [PMID] []
12. Adeoye T, Folorunso V, Banjo A, Akinlolu M, Akintomide R, Adeleke B, et al. Isolation and screening of antibiotic producing bacillus species from soil samples in okitipupa, nigeria. Coast journal of the school of science oaustech okitipupa. 2020;2(2):505 - 13. [GOOGLE SCHOLAR]
13. Brush A, Paulus H. The enzymic formation of O-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethione. Biochem Biophys Res Commun. 1971;45(3):735-41. [DOI:10.1016/0006-291X(71)90478-5] [PMID]
14. Bourhy P, Martel A, Margarita D, Saint Girons I, Belfaiza J. Homoserine O-acetyltransferase, involved in the Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited. Journal of bacteriology. 1997;179(13):4396-8. [DOI:10.1128/jb.179.13.4396-4398.1997] [PMID] []
15. Anakwenze VN, Ezemba CC, Ekwealor IA. Optimization of fermentation conditions of Bacillus thuringiensis EC1 for enhanced methionine production. Advance in Microbiology. 2014;4:344-52. [DOI:10.4236/aim.2014.47041]
16. Kharayat B, Singh P, Shera SS, Banik RM. Enhancement of production of l-methioninase after optimizing culture condition of Pseudomonas stutzeri using artificial neural network. Vegetos. 2022;35(2):453-64. [DOI:10.1007/s42535-021-00330-x]
17. Yocum RR, Perkins JB, Howitt CL, Pero J. Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis. J Bacteriol. 1996;178(15):4604-10. [DOI:10.1128/jb.178.15.4604-4610.1996] [PMID] []
18. Alyousif NA. Distribution, occurrence and molecular characterization of Bacillus related species isolated from different soil in Basrah Province, Iraq. Biodiversitas. 2022;23(2):679-86. [DOI:10.13057/biodiv/d230209]
19. Mulk S, Wahab A, Yasmin H, Mumtaz S, El-Serehy HA, Khan N, Hassan MN. Prevalence of wheat associated Bacillus spp. and their bio-control efficacy against Fusarium root rot. Front Microbiol. 2022;12:798619. [DOI:10.3389/fmicb.2021.798619] [PMID] []
20. Auta HS, Emenike CU, Jayanthi B, Fauziah SH. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar Pollut Bull. 2018;127:15-21. [DOI:10.1016/j.marpolbul.2017.11.036] [PMID]
21. Ayandiran T, Ayandele A, Dahunsi S, Ajala O. Microbial assessment and prevalence of antibiotic resistance in polluted Oluwa River, Nigeria. Egypt J Aquat Res. 2014;40(3):291-9. [DOI:10.1016/j.ejar.2014.09.002]
22. Neidhardt FC, Ingraham JL, Schaechter M. Physiology of the bacterial cell: a molecular approach: Sinauer Sunderland, MA; 1990. [GOOGLE SCHOLAR]
23. Gomes J, Kumar D. Production of L-methionine by submerged fermentation: A review. Enzyme Microb Technol. 2005;37(1):3-18. [DOI:10.1016/j.enzmictec.2005.02.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb