Volume 31, Issue 3 (June 2020)                   Studies in Medical Sciences 2020, 31(3): 219-229 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5013-en.html
Department of Physical Education and Sport, Payame Noor University, Tehran, Iran (Corresponding Author) , ali_barzegari@pnu.ac.ir
Abstract:   (2640 Views)
Background & Aims: Considering the importance of preventing the risk factors in heart disease and lack of sufficient information about the effect of exercise training on copeptin and mid-regional proadrenomedullin expression, this study aimed to investigate the effect of four training methods on the copeptin and mid-regional proadrenomedullin expression in the left ventricle of male Wistar rats.
Materials & Methods: In this experimental study, 40 male Wistar rats with the age of 8-weeks and an average weight of 237±33 grams were randomly divided into 5 groups: control, moderate-intensity training, high-intensity training, high-intensity interval training, and moderate-intensity swimming training. The training programs in experimental groups were performed for 8 weeks (5 days a week). Expression of research genes was determined by real-time polymerase chain reaction. To analyze the data, one way ANOVA and bonferroni were used at a significance level of p≤ 0.05.
Results: Copeptin and mid-regional proadrenomedullin expressions in each training group decreased significantly compared to the control group (p= 0.001, p= 0.001). Also, Copeptin and mid-regional proadrenomedullin expression increased significantly in HIIT and HIT groups compared to ST and MIT groups (p= 0.001, p= 0.001).
Conclusion: All of the four exercise training methods were able to reduce the expression of the studied genes, and make favorable changes in reducing the consequences of cardiac tissue injury. However, swimming exercises seem to have more favorable effects with regard to non-weight bearing property, although further research is needed.
Full-Text [PDF 2977 kb]   (1060 Downloads)    
Type of Study: Research | Subject: Exercise physiology

1. Yared K and Wood MJ. Is marathon running hazardous to your cardiovascular health? The jury is still out. Radiology 2009; 251: 3-5. [DOI:10.1148/radiol.2511090041] [PMID]
2. Gomez Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. J Clin Nutr 2008; 87(1): 142-149. [DOI:10.1093/ajcn/87.1.142] [PMID]
3. Tsutsui H, Kinugawa S, and Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 2011; 301(6): 2181-2190. [DOI:10.1152/ajpheart.00554.2011] [PMID]
4. Banfi G, Colombini A, Lombardi G, and Lubkowska A. Metabolic markers in sports medicine. Adv Clin Chem 2012; 56: 1-45. [DOI:10.1016/B978-0-12-394317-0.00015-7] [PMID]
5. Christ-Crain M. Vasopressin and Copeptin in health and disease. Rev Endocr Metab Disord 2019; 20(3): 283-294. [DOI:10.1007/s11154-019-09509-9] [PMID]
6. Lippi G, Aloe R, Dipalo M, and Cervellin G. Combination of copeptin and highly sensitive troponin I for diagnosing acute myocardial infarction at emergency department admission. Clin Lab 2012; 58: 357-358. [DOI:10.1016/B978-0-12-394383-5.00007-2] [PMID]
7. Bosch A, Ott C, Schmid A, Kannenkeril D, Karg M, Ditting T, et al. Copeptin As A Research Marker In Cardiovascular Disease. J Hypertens 2018; 36: e35. [DOI:10.1097/01.hjh.0000539050.37970.87]
8. Kehl DW, Iqbal N, Fard A, Kipper BA, Landa ADLP, and Maisel AS. Biomarkers in acute myocardial injury. Transl Res 2012; 159(4): 252-264. [DOI:10.1016/j.trsl.2011.11.002] [PMID]
9. Refardt J, Winzeler B, and Christ‐Crain M. Copeptin and its role in the diagnosis of diabetes insipidus and the syndrome of inappropriate antidiuresis. Clin Endocrinol 2019; 91(1): 22-32. [DOI:10.1111/cen.13991] [PMID] [PMCID]
10. Tsuruda T, Kato J, Kuwasako K, and Kitamura K. Adrenomedullin: Continuing to explore cardioprotection. Peptides 2019; 111: 47-54. [DOI:10.1016/j.peptides.2018.03.012] [PMID]
11. Garazzino S, Altieri E, and Denina M. The Role of Pro-Adrenomedullin as a Marker of Severe Bacterial Infection in Children: A Review. Reports 2019; 2(3): 17. [DOI:10.3390/reports2030017]
12. Wild PS, Schnabel RB, Lubos E, Zeller T, Sinning CR, Keller T, et al. Midregional Proadrenomedullin for Prediction of Cardiovascular Events in Coronary Artery Disease: Results from the Athero Gene Study. Clin Chem 2012; 58(1): 226-236. [DOI:10.1373/clinchem.2010.157842] [PMID]
13. Brouwers FP, de Boer RA, van der Harst P, Struck J, de Jong PE, de Zeeuw D, et al. Influence of age on the prognostic value of mid-regional pro-adrenomedullin in the general population. Heart 2012; 98(18): 1348-1353. [DOI:10.1136/heartjnl-2012-302390] [PMID]
14. Von Haehling S, Filippatos GS, Papassotiriou J, Cicoira M, Jankowska EA, Doehner W, et al. Mid‐regional pro‐adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur J Heart Fail 2010; 12(5): 484-491. [DOI:10.1093/eurjhf/hfq031] [PMID]
15. Katan M, Fluri F, Schuetz P, Morgenthaler NG, Zweifel C, Bingisser R, et al. Midregional pro-atrial natriuretic peptide and outcome in patients with acute ischemic stroke. J Am Coll Cardiol 2010; 56(13): 1045-1053. [DOI:10.1016/j.jacc.2010.02.071] [PMID]
16. Lippi G, Schena F, Salvagno GL, Sanchis‐Gomar F, and Guidi GC. Serum Copeptin and Midregion Proadrenomedullin (MR‐proADM) After an Ultramarathon. JCLA 2015; 29(1): 15-20. [DOI:10.1002/jcla.21720] [PMID] [PMCID]
17. Vieira RdP, Toledo AC, Silva LB, Almeida FM, Damaceno-Rodrigues NR, Caldini EG, et al. Anti-inflammatory effects of aerobic exercise in mice exposed to air pollution. Med Sci Sports Exerc 2012; 44(7): 1227-1234. [DOI:10.1249/MSS.0b013e31824b2877] [PMID]
18. Bayati M, Farzad B, Gharakhanlou R, and Agha-Alinejad H. A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble 'all-out'sprint interval training. J Sports Sci Med 2011; 10(3): 571. [PMID] [PMCID]
19. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 2008; 586(1): 151-160. [DOI:10.1113/jphysiol.2007.142109] [PMID] [PMCID]
20. Stacey MJ, Woods DR, Brett SJ, Britland SE, Fallowfield JL, Allsopp AJ, et al. Heat acclimatization blunts copeptin responses to hypertonicity from dehydrating exercise in humans. Physiol Rep 2018; 6(18): e13851. [DOI:10.14814/phy2.13851] [PMID] [PMCID]
21. Billebeau G, Vodovar N, Sadoune M, Launay J-M, Beauvais F, and Cohen-Solal A. Effects of a cardiac rehabilitation programme on plasma cardiac biomarkers in patients with chronic heart failure. Eur J Prev Cardiol 2017; 24(11): 1127-1135. [DOI:10.1177/2047487317705488] [PMID]
22. Trippel TD, Holzendorf V, Halle M, Gelbrich G, Nolte K, Duvinage A, et al. Ghrelin and hormonal markers under exercise training in patients with heart failure with preserved ejection fraction: results from the Ex‐DHF pilot study. Esc Heart Fail 2017; 4(1): 56-65. [DOI:10.1002/ehf2.12109] [PMID] [PMCID]
23. Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, et al. Aerobic high-intensity intervals improve V˙ O2max more than moderate training. Med Sci Sports Exerc 2007; 39(4): 665-671. [DOI:10.1249/mss.0b013e3180304570] [PMID]
24. Haram PM, Kemi OJ, Lee SJ, Bendheim MØ, Al-Share QY, Waldum HL, et al. Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 2009; 81(4): 723-732. [DOI:10.1093/cvr/cvn332] [PMID] [PMCID]
25. Kregel KC, Allen DL, Booth FW, Fleshner MR, Henriksen EJ, Musch T, et al. Resource book for the design of animal exercise protocols. 1nd Ed. Am J Physiol; 2006 [URL]
26. Rognmo Ø, Hetland E, Helgerud J, Hoff J, and Slørdahl SA. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 2004; 11(3): 216-222. [DOI:10.1097/01.hjr.0000131677.96762.0c] [PMID]
27. Krogh J, Gøtze JP, Jørgensen MB, Kristensen LØ, Kistorp C, and Nordentoft M. Copeptin during rest and exercise in major depression. J Affect Disord 2013; 151(1): 284-290. [DOI:10.1016/j.jad.2013.06.007] [PMID]
28. Mayer CU, Treff G, Fenske WK, Blouin K, Steinacker JM, and Allolio B. High incidence of hyponatremia in rowers during a four-week training camp. Am J Med 2015; 128(10): 1144-1151. [DOI:10.1016/j.amjmed.2015.04.014] [PMID]
29. Merry TL, Ainslie PN, Walker R, and Cotter JD. Fitness alters fluid regulatory but not behavioural responses to hypohydrated exercise. Physiol Behav 2008; 95(3): 348-352. [DOI:10.1016/j.physbeh.2008.06.015] [PMID]
30. DuttaRoy S, Nilsson J, Hammarsten O, Cider Å, Bäck M, Karlsson T, et al. High frequency home-based exercise decreases levels of vascular endothelial growth factor in patients with stable angina pectoris. Eur J Prev Cardiol 2015; 22(5): 575-581. [DOI:10.1177/2047487314529349] [PMID]
31. Maeder MT, Staub D, Brutsche MH, Arenja N, Socrates T, Reiter M, et al. Copeptin response to clinical maximal exercise tests. Clin Chem 2010; 56(4): 674-676. [DOI:10.1373/clinchem.2009.136309] [PMID]
32. Long TC, Errami M, George AC, Sun Z, and Garner HR. Responding to possible plagiarism. Science 2009 (Issue). [DOI:10.1126/science.1167408] [PMID]
33. Hew-Butler T, Hoffman MD, Stuempfle KJ, Rogers IR, Morgenthaler NG, and Verbalis JG. Changes in copeptin and bioactive vasopressin in runners with and without hyponatremia. Clin J Sport Med 2011; 21(3): 211. [DOI:10.1097/JSM.0b013e31821a62c2] [PMID] [PMCID]
34. Sanchis-Gomar F, Bonaguri C, Aloe R, Pareja-Galeano H, Martinez-Bello V, Gomez-Cabrera MC, et al. Effects of acute exercise and xanthine oxidase inhibition on novel cardiovascular biomarkers. Transl Res 2013; 162(2): 102-109. [DOI:10.1016/j.trsl.2013.02.006] [PMID]
35. Vila G, Riedl M, Maier C, Struck J, Morgenthaler NG, Handisurya A, et al. Plasma MR‐proADM Correlates to BMI and Decreases in Relation to Leptin After Gastric Bypass Surgery. Obesity 2009; 17(6): 1184-1188. [DOI:10.1038/oby.2009.22] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb