Volume 31, Issue 11 (February 2021)                   Studies in Medical Sciences 2021, 31(11): 813-822 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

maleki M, Ghoreishi S A, Dezfoulian M, Abdolmaleki A. DIFFERENTIATION OF HUMAN OVARIAN FOLLICULAR GRANULOSA CELLS INTO KERATINOCYTES. Studies in Medical Sciences 2021; 31 (11) :813-822
URL: http://umj.umsu.ac.ir/article-1-4867-en.html
Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran (Corresponding Author) , maleki.masoud@gmail.com
Abstract:   (4672 Views)
Background & Aims: Stem cells are undifferentiated cells and are found in different tissues. These cells have capacity of self-renewal and differentiation into other lineages. Granulosa cells (GCs) are the multipotent stem cells. In the present research we evaluated the differentiation potential of GCs into keratinocytes.
Material & Methods: GCs were cultured after enzymatic isolation from ovarian follicle. Then, keratinocyte inductive medium was added and expression of keratin10 and keratin14 were investigated with western blotting technique.
Results: The results of the flow cytometric analysis of the isolated cells indicated the high expression of mesenchymal stem cell specific antigens (p < 0.05). Also, the results of the western blotting showed the expression of creatine 10 and creatine 14 proteins in all groups except for negative control (p< 0.05).
Conclusion: Human granulosa cells have a very high ability to differentiate into keratinocytic cells, and with further research, it is possible to provide a suitable substrate for the use of human granulosa cells to treat severe skin lesions.
Full-Text [PDF 1223 kb]   (695 Downloads)    
Type of Study: Clinical trials | Subject: پوست

References
1. Uitto J, Pulkkinen L. Molecular complexity of the cutaneous basement membrane zone. Mol Biol Rep 1996;23(1):35-46. [DOI:10.1007/BF00357071] [PMID]
2. De Luca M, Tamura RN, Kajiji S, Bondanza S, Rossino P, Cancedda R, et al. Polarized integrin mediates human keratinocyte adhesion to basal lamina. Proc Natl Acad Sci U S A 1990;87(17):6888-92. [DOI:10.1073/pnas.87.17.6888] [PMID] [PMCID]
3. Liu Y, Panayi AC, Bayer LR, Orgill DP. Current Available Cellular and Tissue-Based Products for Treatment of Skin Defects. Adv Skin Wound Care 2019;32(1):19-25. [DOI:10.1097/01.ASW.0000547412.54135.b7] [PMID]
4. Yazawa K, Malay AD, Masunaga H, Numata K. Role of skin layers on mechanical properties and supercontraction of spider dragline silk fiber. Macromol Biosci 2019;19(3):180-9. https://doi.org/10.1002/mabi.201800220 [DOI:10.1002/mabi.201970006] [PMID]
5. Brower J, Blumberg S, Carroll E, Pastar I, Brem H, Chen W. Mesenchymal stem cell therapy and delivery systems in nonhealing wounds. Adv Skin Wound Care 2011;24(11):524-32. [DOI:10.1097/01.ASW.0000407648.89961.a6] [PMID]
6. Ghayour MB, Abdolmaleki A, Fereidoni M. Use of Stem Cells in the Regeneration of Peripheral Nerve Injuries: an Overview. The Neuroscience Journal of Shefaye Khatam 2015; 3(1):84-98. [DOI:10.18869/acadpub.shefa.3.1.84]
7. Haack‐Sorensen M, Friis T, Bindslev L, Mortensen S, Johnsen H, Kastrup J. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy. Scand J Clin Lab Invest 2008;68(3):192-203. [DOI:10.1080/00365510701601681] [PMID]
8. Mattioli M, Gloria A, Turriani M, Berardinelli P, Russo V, Nardinocchi D, et al. Osteo-regenerative potential of ovarian granulosa cells: an in vitro and in vivo study. Theriogenology 2012;77(7):1425-37. [DOI:10.1016/j.theriogenology.2011.11.008] [PMID]
9. Bukovsky A, Caudle MR, Svetlikova M. Steroid-mediated differentiation of neural/neuronal cells from epithelial ovarian precursors in vitro. Cell Cycle 2008;7(22):3577-83. [DOI:10.4161/cc.7.22.7101] [PMID]
10. Kossowska‐Tomaszczuk K, De Geyter C, De Geyter M, Martin I, Holzgreve W, Scherberich A, et al. The multipotency of luteinizing granulosa cells collected from mature ovarian follicles. Stem Cells 2009;27(1):210-9. [DOI:10.1634/stemcells.2008-0233] [PMID]
11. Varras M. Clinical significance of expression of stem cell markers in human ovarian luteinized granulosa cells during assisted reproduction technologies. Reprod Sys Sex Disord 2012;1(4): 211-6. [DOI:10.4172/2161-038X.1000e106]
12. Bishai IEM, El Ansary MS, Shaheen NMH, Farid RJ. Mesenchymal stem cell separation from Wharton's jelly and its differentiation into keratinocytes. Comp Clin Path 2013;22(4):547-53. [DOI:10.1007/s00580-013-1702-z]
13. Leoni GG, Naitana S. Ovine Granulosa Cells Isolation and Culture to Improve Oocyte Quality. Epitl Cell Cult 2018;21: 95-106. [DOI:10.1007/978-1-4939-8600-2_10] [PMID]
14. Maleki M, Ghanbarvand F, Behvarz MR, Ejtemaei M, Ghadirkhomi E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cell 2014;7(2):118-23. [DOI:10.15283/ijsc.2014.7.2.118] [PMID] [PMCID]
15. Dzafic E, Stimpfel M, Virant-Klun I. Plasticity of granulosa cells: on the crossroad of stemness and transdifferentiation potential. J Assist Reprod Genet 2013;30(10):1255-61. [DOI:10.1007/s10815-013-0068-0] [PMID] [PMCID]
16. Ganjibakhsh M, Shahzadeh Fa, Gohari Ns, Rahmati H, Elyasi Gz, Izadpanah M, et al. isolation, characterization and standard storage of human mesenchymal stem cell derived from adipose and dental pulp tissue. Razi Journal of Medical Sciences 2017;24:35-50. [Google Scholar]
17. Asadi A, Zahri S, Abdolmaleki A. Biosynthesis, characterization and evaluation of the supportive properties and biocompatibility of DBM nanoparticles on a tissue-engineered nerve conduit from decellularized sciatic nerve. Regen Ther 2020; 14:315-21. [DOI:10.1016/j.reth.2020.03.004] [PMID] [PMCID]
18. Baer PC, Kuçi S, Krause M, Kuçi Z, Zielen S, Geiger H, et al. Comprehensive phenotypic characterization of human adipose-derived stromal/stem cells and their subsets by a high throughput technology. Stem Cells Dev 2012;22(2):330-9. [DOI:10.1089/scd.2012.0346] [PMID]
19. Lin C-S, Ning H, Lin G, Lue TF. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy 2012;14(10):1159-63. [DOI:10.3109/14653249.2012.729817] [PMID] [PMCID]
20. Bühring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 2007;11:262-71. [DOI:10.1196/annals.1392.000] [PMID]
21. Fujita Y, Inokuma D, Abe R, Sasaki M, Nakamura H, Shimizu T, et al. Conversion from human haematopoietic stem cells to keratinocytes requires keratinocyte secretory factors. Clin Exp Dermatol 2012;37(6):658-64. [DOI:10.1111/j.1365-2230.2011.04312.x] [PMID]
22. Zhang J, Niu C, Ye L, Huang H, He X, Tong W-G, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425:836-43. [DOI:10.1038/nature02041] [PMID]
23. Inokuma D, Abe R, Fujita Y, Sasaki M, Shibaki A, Nakamura H, et al. CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow‐derived keratinocytes. Stem Cells 2006;24:281-9. [DOI:10.1634/stemcells.2006-0264] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb