Volume 33, Issue 7 (October 2022)                   Studies in Medical Sciences 2022, 33(7): 528-540 | Back to browse issues page

Ethics code: IR.Shahed.REC.1395.142


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khajat F, Azizzade-Delshad A, Haddadzadeh-Niri N, Roghani M. THE EFFECT OF FERULIC ACID IN PREVENTION OF LEARNING AND MEMORY DEFICIT AND HIPPOCAMPAL INJURY IN RATS UNDER CHRONIC TREATMENT WITH DEXAMETHASONE. Studies in Medical Sciences 2022; 33 (7) :528-540
URL: http://umj.umsu.ac.ir/article-1-5879-en.html
Professor, Neurophysiology Research Center, Shahid University, Tehran, Iran (Corresponding Author) , mehjour@yahoo.com
Abstract:   (1063 Views)
Background & Aims: Long-term exposure to glucocorticosteroids is associated with brain damage through augmenting oxidative stress and apoptotic cell death. Due to the anti-oxidative and anti-apoptotic effects of ferulic acid (FA), its effect on learning, memory, and protection of the hippocampus in dexamethasone (DEX) treated rats were investigated in this study.
Materials & Methods: This experimental study was conducted on 32 male Wistar rats. Neural injury was induced by injection of 500 µg/kg/day of DEX for 3 weeks. Treatment groups received oral FA (50 mg/kg/day) for 3 weeks. At the end of 3rd week and following evaluation of learning and memory by passive avoidance and novel object discrimination (NOD) tests, some related factors of oxidative stress and apoptosis in hippocampal homogenate were measured and number of neurons in hippocampal CA1 area was also counted.
Results: Step-through latency and discrimination index were significantly higher in FA-treated DEX group than DEX group. FA-treatment of DEX group was associated with lower levels of MDA, caspase 1, and caspase 3 but higher activity of superoxide dismutase (SOD). Meanwhile, CA1 neuronal density was significantly higher in FA-treated DEX group.
Conclusion: Taking ferulic acid simultaneously with long-term administration of dexamethasone prevents the occurrence of learning and memory disorders and hippocampus damage, and part of its beneficial effect is done through reducing oxidative stress and apoptosis.
 
Full-Text [PDF 861 kb]   (524 Downloads)    
Type of Study: Research | Subject: فیزیولوژی

References
1. Michels B, Zwaka H, Bartels R, Lushchak O, Franke K, Endres T, et al. Memory enhancement by ferulic acid ester across species. Sci Adv 2018;4(10):eaat6994. [DOI:10.1126/sciadv.aat6994] [PMID] [PMCID]
2. Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int J Mol Sci 2022;23(3). [DOI:10.3390/ijms23031851] [PMID] [PMCID]
3. Dos Santos N, Novaes LS, Dragunas G, Rodrigues JR, Brandão W, Camarini R, et al. High dose of dexamethasone protects against EAE-induced motor deficits but impairs learning/memory in C57BL/6 mice. Sci Rep 2019;9(1):1-13. [DOI:10.1038/s41598-019-43217-3] [PMID] [PMCID]
4. Ye Z, Li Q, Guo Q, Xiong Y, Guo D, Yang H, et al. Ketamine induces hippocampal apoptosis through a mechanism associated with the caspase-1 dependent pyroptosis. Neuropharmacology 2018;128:63-75. [DOI:10.1016/j.neuropharm.2017.09.035] [PMID] [PMCID]
5. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 2015;21(7):677-87. [DOI:10.1038/nm.3893] [PMID] [PMCID]
6. Imbriani P, Tassone A, Meringolo M, Ponterio G, Madeo G, Pisani A, et al. Loss of non-apoptotic role of caspase-3 in the PINK1 mouse model of Parkinson's disease. Int J Mol Sci 2019;20(14):3407. [DOI:10.3390/ijms20143407] [PMID] [PMCID]
7. Zhang R, Yi Z, Lin Y, Chang H, Zhang Q. Identification of a Variant in NLRP3 Gene in a Patient with Muckle-Wells Syndrome: A Case Report. 2022. [Google Scholar]
8. Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, et al. Salidroside Ameliorates Alzheimer's Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Front Aging Neurosci 2021;13. [DOI:10.3389/fnagi.2021.809433] [PMID] [PMCID]
9. Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 2022;221(6):e202201159. [Google Scholar]
10. Lalith Kumar V. Ameliorative effects of ferulic acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain. Neurochem Res 2014;39(12):2501-15. [DOI:10.1007/s11064-014-1451-7] [PMID]
11. Lenzi J, Rodrigues AF, Ros AdS, de Castro BB, de Lima DD, Magro DDD, et al. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system. Metab Brain Dis 2015;30(6):1453-63. https://doi.org/10.1007/s11011-015-9751-4 [DOI:10.1007/s11011-015-9725-6]
12. Zhang S-H, Liu D, Hu Q, Zhu J, Wang S, Zhou S. Ferulic acid ameliorates pentylenetetrazol-induced seizures by reducing neuron cell death. Epilep Res 2019;156:106183. [DOI:10.1016/j.eplepsyres.2019.106183] [PMID]
13. Yu C, Pan S, Zhang J, Li X, Niu Y. Ferulic acid exerts Nrf2-dependent protection against prenatal lead exposure-induced cognitive impairment in offspring mice. J Nutr Biochem 2021;91:108603. [DOI:10.1016/j.jnutbio.2021.108603] [PMID]
14. Ghobadi M, Arji B, Yadegari M, Esmailidehaj M, Homayouni Moghadam F, Rezvani ME. Ferulic Acid Ameliorates Cell Injuries, Cognitive and Motor Impairments in Cuprizone-Induced Demyelination Model of Multiple Sclerosis. Cell J 2022;24(11):681-8. [Google Scholar]
15. Guide for the Care and Use of Laboratory Animals [Internet]. Washington (DC): National Academies Press (US). 2011 [cited 2023]. [URL]
16. Issuriya A, Kumarnsit E, Reakkamnuan C, Samerphob N, Sathirapanya P, Cheaha D. Dexamethasone induces alterations of slow wave oscillation, rapid eye movement sleep and high-voltage spindle in rats. Acta Neurobiol Exp 2019;79(3):251-60. [DOI:10.21307/ane-2019-023]
17. Narasimhan A, Chinnaiyan M, Karundevi B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. App Physiol Nutr Metabol 2015;40(8):769-81. [DOI:10.1139/apnm-2015-0002] [PMID]
18. Li WZ, Wu WY, Huang DK, Yin YY, Kan HW, Wang X, et al. Protective effects of astragalosides on dexamethasone and Aβ25-35 induced learning and memory impairments due to decrease amyloid precursor protein expression in 12-month male rats. Food Chem Toxicol 2012;50(6):1883-90. [DOI:10.1016/j.fct.2012.03.064] [PMID]
19. Sadraie S, Kiasalari Z, Razavian M, Azimi S, Sedighnejad L, Afshin-Majd S, et al. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: Insights into underlying molecular mechanisms. Metabol Brain Dis 2019;34(1):245-55. [DOI:10.1007/s11011-018-0349-5] [PMID]
20. Rousta AM, Mirahmadi SMS, Shahmohammadi A, Ramzi S, Baluchnejadmojarad T, Roghani M. S‐allyl cysteine, an active ingredient of garlic, attenuates acute liver dysfunction induced by lipopolysaccharide/d‐galactosamine in mouse: Underlying mechanisms. J Biochem Mol Toxicol 2020;34(9):e22518. [DOI:10.1002/jbt.22518] [PMID]
21. Binesh A, Devaraj SN, Halagowder D. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent. Life Sci 2018;196:28-37. [DOI:10.1016/j.lfs.2018.01.012] [PMID]
22. Suksri K, Semprasert N, Limjindaporn T, Yenchitsomanus P-t, Kooptiwoot S, Kooptiwut S. Cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis. Sci Rep 2022;12(1):1-12. [DOI:10.1038/s41598-022-17372-z] [PMID] [PMCID]
23. Ma L, Feng X, Wang K, Song Y, Luo R, Yang C. Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics. FEBS Open Bio 2020;10(2):211-20. [DOI:10.1002/2211-5463.12771] [PMID] [PMCID]
24. Liu W, Zhao Z, Na Y, Meng C, Wang J, Bai R. Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells. Int J Mol Med 2018;41(4):2028-36. [DOI:10.3892/ijmm.2018.3412] [PMID] [PMCID]
25. Adefegha SA, Omojokun OS, Oboh G, Fasakin O, Ogunsuyi O. Modulatory effects of ferulic acid on cadmium-induced brain damage. J Evid Based Complementary Altern Med 2016;21(4):NP56-NP61. [DOI:10.1177/2156587215621726] [PMID]
26. Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 2017;40(5):1444-56. [DOI:10.3892/ijmm.2017.3127] [PMID] [PMCID]
27. Wang E-J, Wu M-Y, Lu J-H. Ferulic acid in animal models of Alzheimer's disease: A systematic review of preclinical studies. Cells 2021;10(10):2653. [DOI:10.3390/cells10102653] [PMID] [PMCID]
28. Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the kindling model of epilepsy. Life Sci 2017;179:9-14. [DOI:10.1016/j.lfs.2016.08.011] [PMID]
29. Yang H, Qu Z, Zhang J, Huo L, Gao J, Gao W. Ferulic acid ameliorates memory impairment in d-galactose-induced aging mouse model. nt J Food Sci Nutr 2016;67(7):806-17. [DOI:10.1080/09637486.2016.1198890] [PMID]
30. Kim MJ, Choi SJ, Lim S-T, Kim HK, Heo HJ, Kim E-K, et al. Ferulic acid supplementation prevents trimethyltin-induced cognitive deficits in mice. Biosci Biotech Biochem 2007:0703070329-. [DOI:10.1271/bbb.60564] [PMID]
31. Ojha S, Javed H, Azimullah S, Khair SBA, Haque ME. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson's disease. rug Des Devel Ther 2015;9:5499. [DOI:10.2147/DDDT.S90616] [PMID] [PMCID]
32. Zhang L, Wang H, Wang T, Jiang N, Yu P, Chong Y, et al. Ferulic acid ameliorates nerve injury induced by cerebral ischemia in rats. Exp Ther Med 2015;9(3):972-6. [DOI:10.3892/etm.2014.2157] [PMID] [PMCID]
33. Mori T, Koyama N, Tan J, Segawa T, Maeda M, Town T. Combination therapy with octyl gallate and ferulic acid improves cognition and neurodegeneration in a transgenic mouse model of Alzheimer's disease. J Biol Chem 2017;292(27):11310-25. [DOI:10.1074/jbc.M116.762658] [PMID] [PMCID]
34. Tsai F-S, Wu L-Y, Yang S-E, Cheng H-Y, Tsai C-C, Wu C-R, et al. Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. Am J Chinese Med 2015;43(02):319-35. [DOI:10.1142/S0192415X15500214] [PMID]
35. Asano T, Matsuzaki H, Iwata N, Xuan M, Kamiuchi S, Hibino Y, et al. Protective effects of ferulic acid against chronic cerebral hypoperfusion-induced swallowing dysfunction in rats. Int J Mol Sci 2017;18(3):550. [DOI:10.3390/ijms18030550] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb