Volume 35, Issue 6 (September 2024)                   Studies in Medical Sciences 2024, 35(6): 467-478 | Back to browse issues page

Research code: 2174
Ethics code: IR.UMSU.REC.1396.146


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefi B, Valizadeh A, Molavand M, Majidinia M. Reversal effect of fenofibrate on P-glycoprotein-mediated multidrug resistance through PPARγ-dependent upregulation of PTEN expression in SW-480 colorectal cancer cells. Studies in Medical Sciences 2024; 35 (6) :467-478
URL: http://umj.umsu.ac.ir/article-1-6306-en.html
Assistant Professor of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran (Corresponding Author) , majidinia25@gmail.com
Abstract:   (314 Views)
Background & Aims: Multidrug resistance is a major challenge in cancer treatment. This study investigated the role and potential mechanisms of peroxisome proliferator-activated receptors gamma (PPARγ) in 5-FU-resistant colon cancer cells (SW480/5-FU).
Materials & Methods: SW480 and SW480/5-FU cells (2x10⁴ cells/well) were treated with different concentrations of 5-FU (0.01-100 μM) and fenofibrate (1-25 μM) for 24, 48, and 72 hours. Cell viability was evaluated by the MTT test. The accumulation of Rh123 (5 μM) was measured during 120-30 minutes to investigate the activity of P-gp and MRP-1. Gene expression and protein expression were evaluated by RT-PCR and western blot.
Results: Fenofibrate (10 μM) increased the cytotoxicity of 5-FU significantly (P<0.05) and decreased the IC50 from 30 μM to 10 μM. Fenofibrate decreased the expression and activity of P-gp in SW480/5-FU cells by 40% (P<0.01) and increased the intracellular accumulation of 5-FU by 2.5 times. PTEN expression increased 3-fold after fenofibrate treatment in a PPARγ-dependent manner (P<0.001).
Conclusion: Fenofibrate reverses multidrug resistance in colorectal cancer cells by increasing PTEN expression and inhibiting PI3K/Akt pathway. This study suggests targeting PPARγ as an effective approach to overcome multidrug resistance in cancer chemotherapy.

 
Full-Text [PDF 795 kb]   (131 Downloads)    
Type of Study: Research | Subject: بیوشیمی

References
1. Sun X, Zhao P, Lin J, Chen K, Shen J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. Cancer Drug Resist 2023;6(2):390 [PMID: 37457134] [DOI:10.20517/cdr.2023.16] [PMCID: PMC10344729]
2. Duan C, Yu M, Xu J, Li B-Y, Zhao Y, Kankala RK. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed Pharmacother 2023;162:114643 [PMID: 37031496] [DOI:10.1016/j.biopha.2023.114643]
3. Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024;22(1):109 [PMID: 38347575] [DOI:10.1186/s12964-023-01302-1] [PMCID: PMC10860306]
4. Fedotcheva T, Shimanovsky N. Pharmacological Strategies for Overcoming Multidrug Resistance to Chemotherapy. Pharm Chem J 2023;56(10):1307-13 [PMID: 36683825] [DOI:10.1007/s11094-023-02790-8] [PMCID: PMC9838346]
5. Yousefi B, Samadi N, Ahmadi Y. Akt and p53R2, partners that dictate the progression and invasiveness of cancer. DNA repair 2014;22:24-9. [PMID: 25086499] [DOI:10.1016/j.dnarep.2014.07.001]
6. Leiphrakpam PD, Are C. PI3K/Akt/mTOR Signaling Pathway as a Target for Colorectal Cancer Treatment. Int J Mol Sci 2024;25(6):3178 [PMID: 38542151] [DOI:10.3390/ijms25063178] [PMCID: PMC10970097]
7. Muzio G, Barrera G, Pizzimenti S. Peroxisome proliferator-activated receptors (PPARs) and oxidative stress in physiological conditions and in cancer. Antioxidants 2021;10(11):1734. [PMID: 34829605] [DOI:10.3390/antiox10111734] [PMCID: PMC8614822]
8. Lee MY, Lee YJ, Kim YH, Lee SH, Park JH, Kim MO, et al. Role of peroxisome proliferator-activated receptor (PPAR) δ in embryonic stem cell proliferation. Int J Stem Cells 2009;2:28-34 [PMID: 24855517] [DOI:10.15283/ijsc.2009.2.1.28] [PMCID: PMC4021791]
9. Rostami Barandouz H, Mohammadzadeh r, Bagheri M. Study of rs4253778 polymorphism related to peroxisome proliferator alpha receptor gene in rapamycin-treated kidney transplant recipients in west Azerbaijan province (Iran). Studies in Medical Sciences 2024;35(1):19-29 [URL:] [DOI:10.61186/umj.35.1.19]
10. IJpenberg A, Tan NS, Gelman L, Kersten S, Seydoux J, Xu J, et al. In vivo activation of PPAR target genes by RXR homodimers. EMBO J 2004;23(10):2083-91 [PMID: 15103326] [DOI:10.1038/sj.emboj.7600209] [PMCID: PMC424365]
11. Mrowka P, Glodkowska-Mrowka E. PPARγ agonists in combination cancer therapies. Curr Cancer Drug Targets 2020;20(3):197-215 [PMID: 31814555] [DOI:10.2174/1568009619666191209102015]
12. Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024;41(5):114 [PMID: 38619661] [DOI:10.1007/s12032-024-02363-z]
13. Jia X, Qian J, Chen H, Liu Q, Hussain S, Jin J, et al. PPARγ agonist pioglitazone enhances colorectal cancer immunotherapy by inducing PD-L1 autophagic degradation. Eur J Pharmacol 2023;950:175749 [PMID: 37105516] [DOI:10.1016/j.ejphar.2023.175749]
14. Xu L, Che S, Chen H, Liu Q, Shi J, Jin J, et al. PPARγ agonist inhibits c-Myc-mediated colorectal cancer tumor immune escape. J Cell Biochem 2023;124(8):1145-54 [PMID: 37393598] [DOI:10.1002/jcb.30437]
15. Lin F, de Gooijer MC, Roig EM, Buil LC, Christner SM, Beumer JH, et al. ABCB1, ABCG2, and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin Cancer Res 2014;20(10):2703-13 [PMID: 24647572] [DOI:10.1158/1078-0432.CCR-14-0084]
16. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014;92(1):73-89 [PMID: 25083916] [DOI:10.1016/j.pbb.2014.02.012] [PMCID: PMC4212005]
17. Chiarelli F, Di Marzio D. Peroxisome proliferator-activated receptor-gamma agonists and diabetes: current evidence and future perspectives. Vasc Health Risk Manag 2008;4(2):297-304 [PMID: 18561505] [DOI:10.2147/VHRM.S993] [PMCID: PMC2496982]
18. Sharma V, Patial V. Peroxisome proliferator-activated receptor gamma and its natural agonists in the treatment of kidney diseases. Front Pharmacol 2022;13:991059 [PMID: 36339586] [DOI:10.3389/fphar.2022.991059] [PMCID: PMC9634118]
19. YANG Fg, ZHANG Zw, XIN Dq, SHI Cj, WU Jp, GUO Yl, et al. Peroxisome proliferator‐activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines 1. Acta Pharmacol Sin 2005;26(6):753-61 [PMID: 15916743] [DOI:10.1111/j.1745-7254.2005.00753.x]
20. Augimeri G, Giordano C, Gelsomino L, Plastina P, Barone I, Catalano S, et al. The role of PPARγ ligands in breast cancer: from basic research to clinical studies. Cancers 2020;12(9):262 [PMID: 32937951] [DOI:10.3390/cancers12092623] [PMCID: PMC7564201]
21. Zaytseva YY, Wallis NK, Southard RC, Kilgore MW. The PPARγ antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARγ-dependent and-independent mechanisms. Anticancer Res 2011;31(3):813-23 [PMID: 21498701]
22. Yang W-L, Frucht H. Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis 2001;22(9):1379-83 [PMID: 11532858] [DOI:10.1093/carcin/22.9.1379]
23. Masoudi N, Sadeghi S, Pashaei MR, Valizad Hasanloei MA. Evaluation of the relationship between serum levels of carcinoembryonic antigen (cea) and homeostasis model assessment of insulin resistance-2 (homa2-ir) in colorectal cancer patients. Studies in Medical Sciences 2022;33(3):152-9 [URL:] [DOI:10.52547/umj.33.3.152]
24. Herik Dizji M, Masoudi N, Rezaei S, Seyedmardani S, Pourjabali M. Osteoporosis frequency and its relationship with serum level of vitamin k2 in colon cancer patients before and after colectomy. Studies in Medical Sciences 2022;33(2):106-15 [URL:] [DOI:10.52547/umj.33.2.106]
25. Daniele B, Secondulfo M, De Vivo R, Pignata S, De Magistris L, Delrio P, et al. Effect of chemotherapy with 5-fluorouracil on intestinal permeability and absorption in patients with advanced colorectal cancer. J Clin Gastroenterol 2001;32(3):228-30 [PMID: 11246350] [DOI:10.1097/00004836-200303000-00009]
26. Anaka M, Abdel-Rahman O. Managing 5FU Cardiotoxicity in Colorectal Cancer Treatment. Cancer Manag Res 2023;14(null):273-85 [PMID: 35115827] [DOI:10.2147/CMAR.S273544] [PMCID: PMC8799936]
27. Jaaks P, Coker EA, Vis DJ, Edwards O, Carpenter EF, Leto SM, et al. Effective drug combinations in breast, colon and pancreatic cancer cells. Nature 2022;603(7899):166-73 [PMID: 35197630] [DOI:10.1038/s41586-022-04437-2] [PMCID: PMC8891012]
28. Ortega-Molina A, Serrano M. PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 2013;24(4):184-9 [PMID: 23245767] [DOI:10.1016/j.tem.2012.11.002] [PMCID: PMC3836169]
29. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2011;2(3):135 [PMID: 21411864] [DOI:10.18632/oncotarget.240] [PMCID: PMC3260807]
30. Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C, et al. PTEN alterations and their role in cancer management: are we making headway on precision medicine? Genes 2020;11(7):719 [PMID: 32605290] [DOI:10.3390/genes11070719] [PMCID: PMC7397204]
31. Lee SY, Hur GY, Jung KH, Jung HC, Lee SY, Kim JH, et al. PPAR-γ agonist increase gefitinib's antitumor activity through PTEN expression. Lung Cancer 2006;51(3):297-301 [PMID: 16386327] [DOI:10.1016/j.lungcan.2005.10.010]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb