Volume 35, Issue 3 (June 2024)                   Studies in Medical Sciences 2024, 35(3): 182-191 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Armin K, Fariba F, Zarei M, Komaki A, Ramezani-Aliakbari F. EFFECT OF OLIVE OIL ON NRF2 GENE EXPRESSION IN THE HEART OF AGED RATS INDUCED BY D-GALACTOSE. Studies in Medical Sciences 2024; 35 (3) :182-191
URL: http://umj.umsu.ac.ir/article-1-6247-en.html
Assistant Professor of Physiology, Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran (Corresponding Author) , f.ramezani@umsha.ac.ir
Abstract:   (661 Views)
Background & Aims: The structure and function of mitochondria are impaired in the aged heart. However, it remains a challenge to find a potent compound to improve cardiac function abnormalities in the elderly. Olive oil (OLO), as an oil rich in unsaturated fatty acids, has various protective effects on the cardiovascular system, including anti-inflammatory and anti-diabetic effects, and reduces blood pressure. In the present study, the protective effects of OLO on heart dysfunction caused by aging were investigated.
Materials & Methods: Male Wistar rats were randomly divided into three groups: control, aged rats induced by D-galactose (D-GAL), and aged rats treated with OLO (D-GAL + OLO). Senescence was induced in rats by intraperitoneal injection of D-GAL at a dose of 150 mg/kg for eight weeks, and the D-Gal+OLO group was treated with oral OLO for eight weeks. The ratio of heart weight to body weight was considered as an index of cardiac hypertrophy. Heart tissues were removed to measure molecular parameters.
Results: Aged rats showed cardiac hypertrophy (## p < 0.01) and a decrease in nuclear factor E2 related factor 2 (Nrf2) gene expression (### p < 0.001) compared to the control group. Treatment with OLO improved cardiac hypertrophy (** p < 0.01) and Nrf2 gene expression (*** p < 0.001).
Conclusion: In general, OLO may have a protective role in aging and cardiac hypertrophy, and its beneficial effects may be related to the improvement of antioxidant status. It is suggested to include OLO in the diet of elderly people and cardiac patients.
 
Full-Text [PDF 574 kb]   (338 Downloads)    
Type of Study: Research | Subject: فیزیولوژی

References
1. Sacco RL, Roth GA, Reddy KS, Arnett DK, Bonita R, Gaziano TA, et al. The heart of 25 by 25: achieving the goal of reducing global and regional premature deaths from cardiovascular diseases and stroke: a modeling study from the American Heart Association and World Heart Federation. Circulation 2016;133(23): e674-e90. [DOI:10.1161/CIR.0000000000000395]
2. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012;22(17): R741-R52. [DOI:10.1016/j.cub.2012.07.024] [PMID]
3. Louch WE, Hougen K, Mørk HK, Swift F, Aronsen JM, Sjaastad I, et al. Sodium accumulation promotes diastolic dysfunction in end‐stage heart failure following Serca2 knockout. J Physiol 2010;588(3): 465-78. [DOI:10.1113/jphysiol.2009.183517] [PMID] []
4. Nakajima-Takenaka C, Zhang G-X, Obata K, Tohne K, Matsuyoshi H, Nagai Y, et al. Left ventricular function of isoproterenol-induced hypertrophied rat hearts perfused with blood: mechanical work and energetics. Am J Physiol Heart Circ Physiol 2009;297(5): H1736-H43. [DOI:10.1152/ajpheart.00672.2009] [PMID]
5. Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik-Ozenci C, Ozdem S, et al. Cardioprotective effect of nesfatin-1 against isoproterenol-induced myocardial infarction in rats: role of the Akt/GSK-3β pathway. Peptides 2017;95: 1-9. [DOI:10.1016/j.peptides.2017.07.003] [PMID]
6. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000;29(3-4): 222-30. [DOI:10.1016/S0891-5849(00)00317-8] [PMID]
7. Mehranfard N, Salimi R, Saranjam A, Naderi R. Protective effect of prazosin on oxidative stress in the heart of aged male rats. STUD MED SCI 2024;34(12): 772-80. [DOI:10.61186/umj.34.12.772]
8. Gohari H, Fariba F, Zarei M, Komaki A, Ramezani-Aliakbari F. Effects of oral adminstration of Gallic acid on lipid profile changes and markers of cardiac damage (Lactate dehydrogenase and cardiac creatine kinase) in aged male rats induced with D-galactose. STUD MED SCI 2024;35(2): 126-35. [DOI:10.61186/umj.35.2.126]
9. Silva-Palacios A, Koenigsberg M, Zazueta C. Nrf2 signaling and redox homeostasis in the aging heart: A potential target to prevent cardiovascular diseases? Ageing Res Rev 2016;26: 81-95. [DOI:10.1016/j.arr.2015.12.005] [PMID]
10. Uttara B, Singh AV, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7(1): 65-74. [DOI:10.2174/157015909787602823] [PMID] []
11. Gounder SS, Kannan S, Devadoss D, Miller CJ, Whitehead KJ, Odelberg SJ, et al. Correction: Impaired Transcriptional Activity of Nrf2 in Age-Related Myocardial Oxidative Stress Is Reversible by Moderate Exercise Training. Plos one 2012;7(10). [DOI:10.1371/annotation/8690bb36-3c5d-48a6-b3be-39a2b50896e1] [PMID]
12. Mukaigasa K, Nguyen LT, Li L, Nakajima H, Yamamoto M, Kobayashi M. Genetic evidence of an evolutionarily conserved role for Nrf2 in the protection against oxidative stress. Mol Cell Biol 2012;32(21): 4455-61. [DOI:10.1128/MCB.00481-12] [PMID] []
13. Warabi E, Takabe W, Minami T, Inoue K, Itoh K, Yamamoto M, et al. Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: role of reactive oxygen/nitrogen species. Free Radic Biol Med 2007;42(2): 260-9. [DOI:10.1016/j.freeradbiomed.2006.10.043] [PMID]
14. Wu J, Xia S, Kalionis B, Wan W, Sun T. The role of oxidative stress and inflammation in cardiovascular aging. Biomed Res Int 2014;2014. [DOI:10.1155/2014/615312] [PMID] []
15. Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes 2011;60(2): 625-33. [DOI:10.2337/db10-1164] [PMID] []
16. Erkens R, Kramer CM, Lückstädt W, Panknin C, Krause L, Weidenbach M, et al. Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic Biol Med 2015;89: 906-17. [DOI:10.1016/j.freeradbiomed.2015.10.409] [PMID]
17. Liu H, Zhu S, Han W, Cai Y, Liu C. DMEP induces mitochondrial damage regulated by inhibiting Nrf2 and SIRT1/PGC-1α signaling pathways in HepG2 cells. Ecotoxicol Environ Saf 2021;221: 112449. [DOI:10.1016/j.ecoenv.2021.112449] [PMID]
18. Goffart S, von Kleist-Retzow J-C, Wiesner RJ. Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res 2004;64(2): 198-207. [DOI:10.1016/j.cardiores.2004.06.030] [PMID]
19. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016;73(17): 3221-47. [DOI:10.1007/s00018-016-2223-0] [PMID] []
20. Chang Y-M, Chang H-H, Lin H-J, Tsai C-C, Tsai C-T, Chang H-N, et al. Inhibition of cardiac hypertrophy effects in D‐galactose‐induced senescent hearts by alpinate oxyphyllae fructus treatment. Evid Based Complement Alternat Med 2017;2017(1): 2624384. [DOI:10.1155/2017/2624384] [PMID] []
21. Peñarrieta JM, Mollinedo P, Aliaga-Rossel E, Vila JL, Bravo JA. Gallic acid and its derivatives: occurrence and identification in high altitude edible and medicinal plants. THOMPSON, MA & COLLINS, PB Handbook on gallic acid: natural occurrences, antioxidant properties and health implications Nova Publishers 2013. [google scholar]
22. Kiritsakis A, Markakis P. Olive oil: a review. Adv Food Res 1988;31: 453-82. [DOI:10.1016/S0065-2628(08)60170-6] [PMID]
23. Covas M-I. Olive oil and the cardiovascular system. Pharmacol Res 2007;55(3): 175-86. [DOI:10.1016/j.phrs.2007.01.010] [PMID]
24. Gutfinger T. Polyphenols in olive oils. J Am Oil Chem 1981;58(11): 966-8. [DOI:10.1007/BF02659771]
25. Chang Y-M, Chang H-H, Lin H-J, Tsai C-C, Tsai C-T, Chang H-N, et al. Inhibition of cardiac hypertrophy effects in d-galactose-induced senescent hearts by alpinate oxyphyllae fructus treatment. Evid Based Complement Alternat Med 2017. [DOI:10.1155/2017/2624384] [PMID] []
26. Nakbi A, Tayeb W, Grissa A, Issaoui M, Dabbou S, Chargui I, et al. Effects of olive oil and its fractions on oxidative stress and the liver's fatty acid composition in 2, 4-Dichlorophenoxyacetic acid-treated rats. Nutr Metab 2010;7: 1-11. [DOI:10.1186/1743-7075-7-80] [PMID] []
27. Shackebaei D, Hesari M, Ramezani-Aliakbari S, Pashaei M, Yarmohammadi F, Ramezani-Aliakbari F. Cardioprotective effect of naringin against the ischemia/reperfusion injury of aged rats. Naunyn Schmiedebergs Arch Pharmacol 2023: 1-10. [DOI:10.1007/s00210-023-02692-2] [PMID]
28. Rosner B. Fundamentals of biostatistics: Cengage learning 2015. [URL]
29. Shahidi S, Ramezani-Aliakbari K, Komaki A, Salehi I, Hashemi S, Asl SS, et al. Effect of vitamin D on cardiac hypertrophy in D-galactose-induced aging model through cardiac mitophagy. Mol Biol Rep 2023;50(12): 10147-55. [DOI:10.1007/s11033-023-08875-7] [PMID]
30. Zarei M, Sarihi A, Zamani A, Raoufi S, Karimi SA, Ramezani-Aliakbari F. Mitochondrial biogenesis and apoptosis as underlying mechanisms involved in the cardioprotective effects of Gallic acid against D-galactose-induced aging. Mol Biol Rep 2023;50(10): 8005-14. [DOI:10.1007/s11033-023-08670-4] [PMID]
31. Valcarcel-Ares MN, Gautam T, Warrington JP, Bailey-Downs L, Sosnowska D, de Cabo R, et al. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J Gerontol A Biol Sci Med Sci 2012;67(8): 821-9. [DOI:10.1093/gerona/glr229] [PMID] []
32. Zhou S, Sun W, Zhang Z, Zheng Y. The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxid Med Cell Longev 2014;2014: 260429. [DOI:10.1155/2014/260429] [PMID] []
33. Ungvari Z, Bailey-Downs L, Sosnowska D, Gautam T, Koncz P, Losonczy G, et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am J Physiol Heart Circ Physiol 2011;301(2): H363-H72. [DOI:10.1152/ajpheart.01134.2010] [PMID] []
34. Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol Heart Circ Physiol 1996;271(3): H1215-H28. [DOI:10.1152/ajpheart.1996.271.3.H1215] [PMID]
35. Zhou S, Sun W, Zhang Z, Zheng Y. The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxid Med Cell Longev 2014;2014. [DOI:10.1155/2014/260429] [PMID] []
36. Radak Z, Atalay M, Jakus J, Boldogh I, Davies K, Goto S. Exercise improves import of 8-oxoguanine DNA glycosylase into the mitochondrial matrix of skeletal muscle and enhances the relative activity. Free Radic Biol Med 2009;46(2): 238-43. [DOI:10.1016/j.freeradbiomed.2008.10.022] [PMID] []
37. Al‐Shudiefat AAR, Ludke A, Malik A, Jassal DS, Bagchi AK, Singal PK. Olive oil protects against progression of heart failure by inhibiting remodeling of heart subsequent to myocardial infarction in rats. Physiol Rep 2022;10(15): e15379. [DOI:10.14814/phy2.15379] [PMID] []
38. Mataix, Ochoa, Quiles. Olive oil and mitochondrial oxidative stress. Int J Vitam Nutr Res 2006;76(4): 178-83. [DOI:10.1024/0300-9831.76.4.178] [PMID]
39. Ghorbel I, Elwej A, Jamoussi K, Boudawara T, Kamoun NG, Zeghal N. Potential protective effects of extra virgin olive oil on the hepatotoxicity induced by co-exposure of adult rats to acrylamide and aluminum. Food Funct 2015;6(4): 1126-35. [DOI:10.1039/C4FO01128G] [PMID]
40. Chen S, Law CS, Grigsby CL, Olsen K, Hong T-T, Zhang Y, et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 2011;124(17): 1838-47. [DOI:10.1161/CIRCULATIONAHA.111.032680] [PMID] []
41. Bayram B, Esatbeyoglu T, Schulze N, Ozcelik B, Frank J, Rimbach G. Comprehensive analysis of polyphenols in 55 extra virgin olive oils by HPLC-ECD and their correlation with antioxidant activities. Plant Foods Hum Nutr 2012;67: 326-36. [DOI:10.1007/s11130-012-0315-z] [PMID]
42. Bayram B, Ozcelik B, Grimm S, Roeder T, Schrader C, Ernst IM, et al. A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Res 2012;15(1): 71-81. [DOI:10.1089/rej.2011.1245] [PMID] []
43. Bando M, Masumoto S, Kuroda M, Tsutsumi R, Sakaue H. Effect of olive oil consumption on aging in a senescence-accelerated mice-prone 8 (SAMP8) model. J Med Invest 2019;66(3.4): 241-7. [DOI:10.2152/jmi.66.241] [PMID]
44. Ezlegini F EA, Firozray M. Evaluation of glutathione peroxide activity and oxidative stress in type 2 diabetic patients and their condition Correlation with serum and blood glucose levels Lipid parameters in a case study. Stud Med Sci 2022;33(4): 234-43. [DOI:10.52547/umj.33.4.234]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb