Volume 34, Issue 12 (March 2024)                   Studies in Medical Sciences 2024, 34(12): 760-771 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kabaranzadghadim S, Gholizadeh-Ghaleh Aziz S, Babaei G, Mehranfar S, Mahmodlou R. ARTIFICIAL INTELLIGENCE AND GENE THERAPY OF BREAST CANCER. Studies in Medical Sciences 2024; 34 (12) :760-771
URL: http://umj.umsu.ac.ir/article-1-6143-en.html
MD-Ph.D. in Molecular Medicine, Assistant Professor of Urmia University of Medical Sciences, Urmia, Iran (Corresponding Author) , gholizadeh.sh@umsu.ac.ir
Abstract:   (2496 Views)
Background & Aims: Gene therapy is used in various diseases such as cancer. Breast cancer is the most common malignancy in women worldwide, which shows the necessity of using innovative approaches in treatment methods. The ability of artificial intelligence algorithms to process large data, complex patterns, and classify them can be used to improve the process of gene therapy in breast cancer. The aim of this article is to review the available information and emphasize the applications of artificial intelligence in targeted gene therapy for breast cancer.
Materials & Methods: To carry out this study we used the articles on PubMed databases by searching for related keywords to collect information.
Results: By designing artificial intelligence algorithms and analyzing very complex molecular pathways in the human body and sampling the experiences of scientists and doctors in clinical studies and simulating biological processes related to the regulation of gene expression in the human body, the effectiveness of gene carriers, control of gene delivery parameters/medicine and modeling of cells minimized the rate of medical errors and with early diagnosis of the disease and predicting the effectiveness of the medicine, it provided patient-centered treatments of the effectiveness of new treatments such as gene therapy with the least complications at the highest level.
Conclusion: In recent decade, many efforts have been made to use all types of gene therapy for breast cancer patients with the least complications and the most effectiveness. Therefore, artificial intelligence is a powerful tool for optimizing early diagnosis and treatment for breast cancer. It’s combination with interdisciplinary sciences in improving the health of the society is a very interesting topic for scientists, but due to the limitations that exist for its use, such as ethical cases and high costs, it should be done with high precision and sufficient studies.
 
Full-Text [PDF 551 kb]   (936 Downloads)    
Type of Study: Review article | Subject: Oncology

References
1. Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, et al. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? Nano Today 2022; 47:101665. [DOI:10.1016/j.nantod.2022.101665] [PMID] []
2. Kowalczyk DW, Wysocki PJ, Mackiewicz A. Cancer immunotherapy using cells modified with cytokine genes. Acta Biochim Pol 2003;50(3):613-24. [DOI:10.18388/abp.2003_3655] [PMID]
3. Albeshan SM, Hossain SZ, Mackey MG, Brennan PC. Can Breast Self-examination and Clinical Breast Examination Along With Increasing Breast Awareness Facilitate Earlier Detection of Breast Cancer in Populations With Advanced Stages at Diagnosis? Clin Breast Cancer 2020;20(3):194-200. [DOI:10.1016/j.clbc.2020.02.001] [PMID]
4. Godet I, Gilkes DM. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther 2017;4(1):1-17. [DOI:10.15761/ICST.1000228] [PMID] []
5. Dastjerd N, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, et al. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2022;40(1):28-48. [DOI:10.1002/cbf.3676] [PMID]
6. Maruyama H, Higuchi N, Nishikawa Y, Kameda S, Iino N, Kazama JJ, et al. High-level expression of naked DNA delivered to rat liver via tail vein injection. J Gene Med 2002;4(3):333-41. [DOI:10.1002/jgm.281] [PMID]
7. Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005;60(2):247-66. [DOI:10.1016/j.ejpb.2004.11.011] [PMID]
8. Tebas P, Stein D, Tang WW, Frank I, Shelley Q, Lee G, et al. NIH Public Access. 2014;370(10):901-10. [DOI:10.1056/NEJMoa1300662] [PMID] []
9. Arabi F, Mansouri V, Ahmadbeigi N. Gene therapy clinical trials, where do we go? An overview. Biomed Pharmacother 2022;153:113324. [DOI:10.1016/j.biopha.2022.113324] [PMID]
10. Prasad G, Wang H, Hill DL, Zhang R. Recent advances in experimental molecular therapeutics for malignant gliomas. Curr Med Chem Anticancer Agents 2004;4(4):347-61. [DOI:10.2174/1568011043352911] [PMID]
11. Cross D, Burmester JK. Gene therapy for cancer treatment: Past, present and future. Clin Med Res 2006;4(3):218-27. [DOI:10.3121/cmr.4.3.218] [PMID] []
12. Nafissi N, Khayamzadeh M, Zeinali Z, Pazooki D, Hosseini M, Akbari ME. Epidemiology and Histopathology of Breast Cancer in Iran versus Other Middle Eastern Countries. Orig Artic Middle East J Cancer 2015;9(3):243-51. [Google Scholar]
13. Lee JJ, Che CA. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int J Nanomed 2017;2373-84. [DOI:10.2147/IJN.S127329] [PMID] []
14. Kaur K, Jaitak V. Recent Development in Indole Derivatives as Anticancer Agents for Breast Cancer. Anticancer Agents Med Chem 2019;19(8):962. [DOI:10.2174/1871520619666190312125602] [PMID]
15. Naderi R, Gholizadeh-Ghaleh Aziz S, Haghigi-Asl AS. Evaluating the effect of Alantolactone on the expression of N-cadherin and Vimentin genes effective in epithelial-mesenchymal transition (EMT) in breast cancer cell line (MDA-MB-231). Ann Med Surg (Lond). 2022;73:103240. [DOI:10.1016/j.amsu.2021.103240] [PMID] []
16. Babaei G, Aziz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 2021;133:110909. [DOI:10.1016/j.biopha.2020.110909] [PMID]
17. Babaei G, Aliarab A, Abroon S, Rasmi Y, Aziz SG. Application of sesquiterpene lactone: A new promising way for cancer therapy based on anticancer activity. Biomed Pharmacother 2018 Oct;106:239-246. [DOI:10.1016/j.biopha.2018.06.131] [PMID]
18. Gholizadeh-Ghaleh Aziz, Shiva & Kashefi, Saiedeh & Khalaji, Naser. (2022). Effects of Alantolactone on Stemness Genes Expression in the Epithelial Mesenchymal Transition (EMT) in Breast Cancer. Curr Pharmacogenomics and Pers Med 2022;19(1):21-30. [DOI:10.2174/1875692119666220211154735]
19. Rowan E, Poll A, Narod SA. A prospective study of breast cancer risk in relatives of BRCA1/BRCA2 mutation carriers. J Med Genet 2007;44(8):7-8. [Google Scholar]
20. Coignard J, Lush M, Beesley J, O'Mara TA, Dennis J, Tyrer JP, et al. A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nat Commun 2021;12(1). [Google Scholar]
21. Pahle J, Walther W, Pahle J, Walther W. Expert Opinion on Biological Therapy Vectors and strategies for nonviral cancer gene therapy Vectors and strategies for nonviral cancer gene therapy. Expert Opin Biol Ther 2016;16(4):443-61. [DOI:10.1517/14712598.2016.1134480] [PMID]
22. Mout R, Ray M, Lee YW, Scaletti F, Rotello VM. In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges. Bioconjug Chem. 2017;28(4):880-4. [DOI:10.1021/acs.bioconjchem.7b00057] [PMID] []
23. Izmirli M, Sonmez D, Gogebakan B. The war against cancer: Suicide gene therapy. Adv Mod Oncol Res 2016;2(3):xx-xx. [DOI:10.18282/amor.v2.i3.103]
24. Johari B, Moradi M. Application of Transcription Factor Decoy Oligodeoxynucleotides (ODNs) for Cancer Therapy. Methods Mol Biol 2022;2521:207-30. [DOI:10.1007/978-1-0716-2441-8_11] [PMID]
25. Ji W, Sun B, Su C. Targeting MicroRNAs in Cancer Gene Therapy. Genes 2017;8(1):21. [DOI:10.3390/genes8010021] [PMID] []
26. Breast cancer - IARC. [cited 2023 Jul 19]. Available from: https://www.iarc.who.int/cancer-type/breast-cancer/ [URL]
27. Hammood ZD, Salih AM, Othman S, Abdulla BA, Mohammed SH, Kakamad FH, Naqar S. Breast cancer recurrence 27 years after full recovery; A case report with literature review. Int J Surg Case Rep 2022;92:106827. [DOI:10.1016/j.ijscr.2022.106827] [PMID] []
28. Pangarsa EA, Rizky D, Tandarto K, Setiawan B, Santosa D, Hadiyanto JN, Kyana S, Suharti C. The effect of multidisciplinary team on survival rates of women with breast cancer: a systematic review and meta-analysis. Ann Med Surg 2023;85(6):2940-8. [DOI:10.1097/MS9.0000000000000914] [PMID] []
29. Dallaire RD, Maruvada PS. Mesure Des Champs Electriques Et Des Courants Ioniques Dessous Les Lignes De Transport Aux Tres Hautes Tensions Continues. Can Electr Eng J 1979;4(3):22-5. [DOI:10.1109/CEEJ.1979.6594427]
30. Senturk N, Tuncel G, Dogan B, Aliyeva L, Dundar MS, Sag SO, et al. Brca variations risk assessment in breast cancers using different artificial intelligence models. Genes 2021;12(11):1-13. [DOI:10.3390/genes12111774] [PMID] []
31. De La Fuente Garcia S, Ritchie CW, Luz S. Artificial Intelligence, Speech, and Language Processing Approaches to Monitoring Alzheimer's Disease: A Systematic Review. J Alzheimer's Dis 2020;78(4):1547-74. [DOI:10.3233/JAD-200888] [PMID] []
32. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J 2021;8(2):e188-e194. [DOI:10.7861/fhj.2021-0095] [PMID] []
33. Gandomi A, Haider M. International Journal of Information Management Beyond the hype : Big data concepts, methods, and analytics. Int J Inf Manage 2015;35(2):137-44. [DOI:10.1016/j.ijinfomgt.2014.10.007]
34. Review A. Artificial Intelligence in Rheumatoid Arthritis : Current Status and Future Perspectives : A State-of-the-. Rheumatol Ther [Internet]. 2022;9(5):1249-304. [DOI:10.1007/s40744-022-00475-4] [PMID] []
35. Floridi L, Cowls J. A Unified Framework of Five Principles for AI in Society. Harvard Data Sci Rev 2022:535-45. [DOI:10.1002/9781119815075.ch45]
36. Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med 2020;288(1):62-81. [DOI:10.1111/joim.13030] [PMID]
37. Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, et al. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adv Mater 2020;32(13):1-15. https://doi.org/10.1002/adma.202070100 [DOI:10.1002/adma.202070100 https://doi.org/10.1002/adma.201901989]
38. Tran WT, Jerzak K, Lu FI, Klein J, Tabbarah S, Lagree A, et al. Personalized Breast Cancer Treatments Using Artificial Intelligence in Radiomics and Pathomics. J Med Imaging Radiat Sci 2019;50(4):S32-41. [DOI:10.1016/j.jmir.2019.07.010] [PMID]
39. Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics. 2023;15(3):868. [DOI:10.3390/pharmaceutics15030868] [PMID] []
40. Sotiriou C, Neo S, Mcshane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 2003;100(18):10393-8. [DOI:10.1073/pnas.1732912100] [PMID] []
41. Schork NJ. Personalized medicine: Time for one-person trials. Nature 2015;520(7549):609-11. [DOI:10.1038/520609a] [PMID]
42. Schork NJ. Artificial Intelligence and Personalized Medicine. Cancer Treat Res 2019;178:265-83. [DOI:10.1007/978-3-030-16391-4_11] [PMID] []
43. Zhang Z, Li J, He T, Ding J. Bioinformatics Identified 17 Immune Genes as Prognostic Biomarkers for Breast Cancer: Application Study Based on Artificial Intelligence Algorithms. Front Oncol 2020;10:330. [DOI:10.3389/fonc.2020.00330] [PMID] []
44. Khan D, Shedole S. Leveraging Deep Learning Techniques and Integrated Omics Data for Tailored Treatment of Breast Cancer. J Pers Med 2022;12(5):674. [DOI:10.3390/jpm12050674] [PMID] []
45. Palm C, Connolly CE, Masser R, Padberg Sgier B, Karamitopoulou E, Simon Q, Bode B, Tinguely M. Determining HER2 Status by Artificial Intelligence: An Investigation of Primary, Metastatic, and HER2 Low Breast Tumors. Diagnostics 2023;13(1):168. [DOI:10.3390/diagnostics13010168] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb