Volume 34, Issue 2 (May 2023)                   Studies in Medical Sciences 2023, 34(2): 80-89 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5990-en.html
Post-doctoral researcher, Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences and Metabolism, Shahid Beheshti University of Medical Sciences, Tehran, Iran; PhD in Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran (Corresponding Author) , farzaneh.motafeghi@gmail.com
Abstract:   (1140 Views)
Background & Aims: Fluoxetine-induced cytotoxicity involves multiple mechanisms, including increased production of reactive oxygen species (ROS) and reduced antioxidant capacity by decreasing levels of GSH and buthionine sulfoximine (BSO), which are associated with increased levels of protein carbonyls, malondialdehyde, GST activity, NO and NF-KB levels, and superoxide anions. The purpose of this study was the effect of lycopene and L-carnitine on cytotoxicity and oxidative stress caused by fluoxetine on normal gingival cell line.
Materials & Methods: In this study, 50, 100, and 200 µM concentrations of L-carnitine and lycopene were used as antioxidants to investigate the cellular toxicity caused by fluoxetine and by measuring oxidative stress factors such as ROS and lipid peroxidation (LPO). Statistical analysis was performed using Prism V8 software, and a p <0.05 was considered significant.
Results: The results showed that fluoxetine induced cellular oxidative stress by impairing mitochondrial function. Co-treatment of cells with fluoxetine, lycopene, and L-carnitine effectively inhibited fluoxetine-induced cytotoxicity, scavenged free radicals, and prevented lipid membrane damage (p<0.05).
Conclusion: this study demonstrates that fluoxetine can induce cellular damage. Further investigations should be conducted on larger patient populations undergoing longer treatment periods with antidepressants to evaluate their cellular toxicity. The findings also indicate that lycopene and L-carnitine have potent antioxidant effects in mitigating fluoxetine-induced cytotoxicity by scavenging free radicals and preventing lipid membrane damage.
Full-Text [PDF 456 kb]   (567 Downloads)    
Type of Study: Research | Subject: Poisoning

1. Wong D, Bymaster F, Horng J, Molloy B. A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3-phenylpropylamine. J Pharmacol Exp Ther 1975;193(3):804-11. [] [PMID]
2. Sánchez C, Hyttel J. Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 1999;19:467-89. [DOI:10.1023/A:1006986824213] [PMID]
3. Gobert A, Rivet JM, Cistarelli L, Millan M. Potentiation of the fluoxetine‐induced increase in dialysate levels of serotonin (5‐HT) in the frontal cortex of freely moving rats by combined blockade of 5‐HT1A and 5‐HT1B receptors with WAY 100,635 and GR 127,935. J Neurochem 1997;68(3):1159-63. [DOI:10.1046/j.1471-4159.1997.68031159.x] [PMID]
4. Tao R, Fray A, Aspley S, Brammer R, Heal D, Auerbach S. Effects on serotonin in rat hypothalamus of D-fenfluramine, aminorex, phentermine and fluoxetine. Eur J Pharmacol 2002;445(1-2):69-81. [DOI:10.1016/S0014-2999(02)01751-X] [PMID]
5. Ali M, Sharaf A, El-Deen O, El-Menshay O, Bakery S, editors. Genotoxic effects of fluoxetine on the chromosomes of bone marrow cells of pregnant mice. 39th Annual International Meeting, Int Assoc Foren Toxicol; 2001.
6. Zlatković J, Todorović N, Tomanović N, Bošković M, Djordjević S, Lazarević-Pašti T, et al. Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study. Eur J Pharm Sci 2014;59:20-30. [DOI:10.1016/j.ejps.2014.04.010] [PMID]
7. Balmus IM, Ciobica A, Antioch I, Dobrin R, Timofte D. Oxidative stress implications in the affective disorders: main biomarkers, animal models relevance, genetic perspectives, and antioxidant approaches. Oxid Med Cell Longev 2016;2016. [DOI:10.1155/2016/3975101] [PMID] [PMCID]
8. Mundalil Vasu M, Anitha A, Takahashi T, Thanseem I, Iwata K, Asakawa T, et al. Fluoxetine increases the expression of miR-572 and miR-663a in human neuroblastoma cell lines. PLoS One 2016;11(10):e0164425. [DOI:10.1371/journal.pone.0164425] [PMID] [PMCID]
9. Lee CS, Kim YJ, Jang ER, Kim W, Myung SC. Fluoxetine Induces Apoptosis in Ovarian Carcinoma Cell Line OVCAR‐3 Through Reactive Oxygen Species‐Dependent Activation of Nuclear Factor‐κB. Basic Clin Pharmacol Toxicol 2010;106(6):446-53. [DOI:10.1111/j.1742-7843.2009.00509.x] [PMID]
10. Aleson-Carbonell L, Fernández-López J, Pérez-Alvarez J, Kuri V. Characteristics of beef burger as influenced by various types of lemon albedo. Innov Food Sci Emerg Technol 2005;6(2):247-55. [DOI:10.1016/j.ifset.2005.01.002]
11. James A, Ryan J, Parkman H. Effects of the selective serotonin reuptake inhibitor, fluoxetine, on regional gastric contractility 1. J Neurogastroenterol Motil 2005;17(1):76-82. [DOI:10.1111/j.1365-2982.2004.00613.x] [PMID]
12. Camacho‐Alonso F, López‐Jornet P, Tudela‐Mulero M. Synergic effect of curcumin or lycopene with irradiation upon oral squamous cell carcinoma cells. Oral Dis 2013;19(5):465-72. [DOI:10.1111/odi.12025] [PMID]
13. Halford JC, Harrold JA, Lawton CL, Blundell JE. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. Curr Drug Targets 2005;6(2):201-13. [DOI:10.2174/1389450053174550] [PMID]
14. Motafeghi F, Habibi E, Firozjaei M, Eghbali M, Mortazavi P, Salmanmahiny A, et al. The Cytotoxic Effect of the Tarragon (Artemisia dracunculus L.) Hydroalcoholic Extract on the HT-29, MKN45, and MCF-7 Cell Lines. Pharm Biomed Res 2023;9(1):27-36. [DOI:10.32598/PBR.9.1.1025.2]
15. Shokrzadeh M, Mortazavi P, Moghadami A, Khayambashi B, Motafeghi F. Synergistic antiproliferative and anticancer activity of carotenoid lutein or coenzyme Q10 in combination with doxorubicin on the MCF7 cell line. Appl In Vitro Toxicol 2021;7(4):167-74. [DOI:10.1089/aivt.2021.0008]
16. Motafeghi F, Shahsavari R, Mortazavi P, Shokrzadeh M. Anticancer effect of paroxetine and amitriptyline on HT29 and A549 cell lines. Toxicol In Vitro 2023;87:105532. [DOI:10.1016/j.tiv.2022.105532] [PMID]
17. Motafeghi F, Mortazavi P, Ghassemi-Barghi N, Zahedi M, Shokrzadeh M. Dexamethasone as an anti-cancer or hepatotoxic. Toxicol Mech Methods 2023;33(2):161-71. [DOI:10.1080/15376516.2022.2105183] [PMID]
18. Motafeghi F, Khayambashi B, Mortazavi P, Eghbali M, Salmanmahiny A, Shahsavari R, et al. Synergistic Effect of Selenium/Zinc with Sulfasalazine on the Human Colorectal Cancer Cell Line (HT-29). Appl In Vitro Toxicol 2023;9(1):3-12. [DOI:10.1089/aivt.2022.0007]
19. Motafeghi F, Mortazavi P, Salman Mahiny AH, Abtahi MM, Shokrzadeh M. The role of ginger's extract and N-acetylcysteine against docetaxel-induced oxidative stress and genetic disorder. Drug Chem Toxicol 2022:1-8. [DOI:10.1080/01480545.2022.2075377] [PMID]
20. Motafeghi F, Mortazavi P, Mahdavi M, Shokrzadeh M. Cellular effects of epsilon toxin on the cell viability and oxidative stress of normal and lung cancer cells. Microb Pathog 2022;169:105649. [DOI:10.1016/j.micpath.2022.105649] [PMID]
21. Slamon DN, Ward TH, Butler J, Pentreath VW. Assessment of DNA damage in C6 glioma cells after antidepressant treatment using an alkaline comet assay. Arch Toxicol 2001;75:243-50. [DOI:10.1007/s002040100228] [PMID]
22. Herbet M, Gawrońska-Grzywacz M, Jagiełło-Wójtowicz E. Evaluation of selected biochemical parameters of oxidative stress in rats pretreated with rosuvastatin and fluoxetine. Acta Poloniae Pharmaceutica 2015;72(2):261-5. [PMID]
23. Dave A, Parande F, Park E-J, Pezzuto JM. Phytochemicals and cancer chemoprevention. J Cancer Metas Treat 2020;6:46. [DOI:10.20517/2394-4722.2020.106]
24. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 1989;274(2):532-8. [DOI:10.1016/0003-9861(89)90467-0] [PMID]
25. Muzandu K, Ishizuka M, Sakamoto KQ, Shaban Z, El Bohi K, Kazusaka A, et al. Effect of lycopene and β-carotene on peroxynitrite-mediated cellular modifications. Toxicol Appl Pharmacol 2006;215(3):330-40. [DOI:10.1016/j.taap.2006.03.006] [PMID]
26. Park YO, Hwang E-S, Moon TW. The effect of lycopene on cell growth and oxidative DNA damage of Hep3B human hepatoma cells. Biofactors 2005;23(3):129-39. [DOI:10.1002/biof.5520230302] [PMID]
27. Rao AV, Agarwal S. Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr Cancer 1998;31(3):199-203. Available from: http://dx.doi.org/10.1080/01635589809514703 [DOI:10.1080/01635589809514703] [PMID]
28. Saberi AH, Kowsari M. Protective Effects of Lycopene on the γ-radiation Induced Chromosomal Damage and Cell Killing in Cultured Human Fibroblast Cells. Jundishapur Sci Med J 2011;10(5):573-81. [Google Scholar]
29. Ateşşahin A, Karahan İ, Türk G, Gür S, Yılmaz S, Çeribaşı AO. Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reprod Toxicol 2006;21(1):42-7. [DOI:10.1016/j.reprotox.2005.05.003] [PMID]
30. Aslanturk OS, Celik TA. Preventive effect of lycopene on chromosome aberrations in Allium cepa. Pakistan J Bil Sci 2005;8(3):482-6. [DOI:10.3923/pjbs.2005.482.486]
31. Riso P, Pinder A, Santangelo A, Porrini M. Does tomato consumption effectively increase the resistance of lymphocyte DNA to oxidative damage? Am J Clin Nutr 1999;69(4):712-8. [DOI:10.1093/ajcn/69.4.712] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb