Volume 33, Issue 3 (June 2022)                   Studies in Medical Sciences 2022, 33(3): 171-182 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbarizadeh-Khajeh S, Farhadi Biregani A, Doosti A. A REVIEW ON ADVANCES AND CHALLENGES IN DEVELOPMENT OF MRNA-BASED VACCINES. Studies in Medical Sciences 2022; 33 (3) :171-182
URL: http://umj.umsu.ac.ir/article-1-5761-en.html
Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran (Corresponding Author) , abbasdoosti@yahoo.com
Abstract:   (3413 Views)
Background & Aims: In the last few years, mRNA vaccines have been considered for the treatment of cancer and viral and autoimmune diseases. Several mRNA vaccine have been evaluated in the preclinical and clinical stages; these experiments have shown that mRNA vaccines elicit a long-term immune response in both animal models and humans. Due to their significant immune responses, the effectiveness of mRNA vaccines against cancers and pathogens are much higher than other vaccines that do not induce significant immune responses. The results of recent developments in various fields have provided the basis for the production of mRNA vaccines with high efficiency and effectiveness. The aim of this review article was to examine the most important developments in the field of mRNA vaccines production as well as the challenges facing this field.
Materials & Methods: The present study is a review article in which, numerous articles indexed in PubMed, Scopus, Science Direct, and Google Scholar search engines were analyzed with the mRNA vaccine and viral infections keywords.
Results: The results of several studies indicated that mRNA-based vaccines have the ability to induce humoral and cellular immune system responses against a wide range of infectious and non-infectious diseases. With the advances in mRNA transfer methods and increased their stability, these vaccines have been introduced as a promising, effective, and safe methods in the treatment and prevention of infectious and non-infectious diseases and cancers.
Conclusion: The robust, long-lasting and safe immune responses observed in animal models, as well as promising data from early human clinical trials, make mRNA-based vaccination as an appropriate alternative to conventional vaccine approaches.
Full-Text [PDF 655 kb]   (676 Downloads)    
Type of Study: Review article | Subject: ویروس شناسی

References
1. Lents MP, Barbosa LP, Santana ALA, Pinheiro EEG, Mugabe LC, Biscarde CEA, et al. Immunocastration of goats using anti-gonadotrophin releasing hormone vaccine. Theriogenol 2018;114:7-13. [DOI:10.1016/j.theriogenology.2018.03.013] [PMID]
2. Scheiblhofer S, Thalhamer J, Weiss R. DNA and mRNA vaccination against allergies. Pediatr Allergy Immunol 2018;29(7):679-88. [DOI:10.1111/pai.12964] [PMID] [PMCID]
3. Pollard C, De Koker S, Saelens X, Vanham G, Grooten J. Challenges and advances towards the rational design of mRNA vaccines. Trends Molec Med 2013;19(12):705-13. [DOI:10.1016/j.molmed.2013.09.002] [PMID]
4. Linares-Fernández S, Lacroix C, Exposito J-Y, Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Molec Med 2020;26(3):311-23. [DOI:10.1016/j.molmed.2019.10.002] [PMID]
5. Brito LA, Kommareddy S, Maione D, Uematsu Y, Giovani C, Scorza FB, et al. Self-amplifying mRNA vaccines. Advances in genetics. 89: Elsevier; 2015. p. 179-233. [DOI:10.1016/bs.adgen.2014.10.005] [PMID]
6. Rice AM, Morales AC, Ho AT, Mordstein C, Mühlhausen S, Watson S, et al. Evidence for strong mutation bias towards, and selection against, T/U content in SARS-CoV2: implications for attenuated vaccine design. bioRxiv 2020. [DOI:10.1101/2020.05.11.088112]
7. Naik R, Peden K. Regulatory considerations on the development of mRNA vaccines. 2020. [DOI:10.1007/82_2020_220] [PMID]
8. Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opinion Immunol 2020;65:14-20. [DOI:10.1016/j.coi.2020.01.008] [PMID]
9. Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017;390(10101):1511-20. [DOI:10.1016/S0140-6736(17)31665-3] [PMID]
10. Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 2017;9(1):1-16. [DOI:10.1186/s13073-017-0450-0] [PMID] [PMCID]
11. Zhu G, Zhang F, Ni Q, Niu G, Chen X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano 2017;11(3):2387-92. [DOI:10.1021/acsnano.7b00978] [PMID]
12. Blakney AK, Zhu Y, McKay PF, Bouton CR, Yeow J, Tang J, et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano 2020;14(5):5711-27. [] [PMID] [PMCID]
13. Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature 2017;543(7644):248-51. [DOI:10.1038/nature21428] [PMID] [PMCID]
14. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020;586(7830):567-71. [] [PMID] [PMCID]
15. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. New Eng J Med 2020;383(16):1544-55. [] [PMID] [PMCID]
16. Tai W, Zhang X, Drelich A, Shi J, Hsu JC, Luchsinger L, et al. A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2. Cell Res 2020;30(10):932-5. [DOI:10.1038/s41422-020-0387-5] [PMID] [PMCID]
17. Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotech 2020;15(8):646-55. [DOI:10.1038/s41565-020-0737-y] [PMID]
18. Pickering BM, Willis AE, editors. The implications of structured 5′ untranslated regions on translation and disease. Seminars in cell & developmental biology; 2005: Elsevier. [DOI:10.1016/j.semcdb.2004.11.006] [PMID]
19. Chatterjee S, Pal JK. Role of 5′‐and 3′‐untranslated regions of mRNAs in human diseases. Biol Cell 2009;101(5):251-62. [DOI:10.1042/BC20080104] [PMID]
20. Lundstrom K. Self-amplifying RNA viruses as RNA vaccines. Int J Molecul Sci 2020;21(14):5130. [DOI:10.3390/ijms21145130] [PMID] [PMCID]
21. Deering RP, Kommareddy S, Ulmer JB, Brito LA, Geall AJ. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opinion Drug Deliv 2014;11(6):885-99. [DOI:10.1517/17425247.2014.901308] [PMID]
22. Berglund P, Smerdou C, Fleeton MN, Liljeström P. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol 1998;16(6):562-5. [DOI:10.1038/nbt0698-562] [PMID]
23. Biddlecome A, Habte HH, McGrath KM, Sambanthamoorthy S, Wurm M, Sykora MM, et al. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles. PLoS One 2019;14(6):e0215031. [] [PMID] [PMCID]
24. Englezou PC, Sapet C, Démoulins T, Milona P, Ebensen T, Schulze K, et al. Self-amplifying replicon RNA delivery to dendritic cells by cationic lipids. Mol Ther Nucleic Acids 2018;12:118-34. [DOI:10.1016/j.omtn.2018.04.019] [PMID] [PMCID]
25. Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021;20(1):1-23. [] [PMID] [PMCID]
26. Fiedler K, Lazzaro S, Lutz J, Rauch S, Heidenreich R. mRNA cancer vaccines. Curr Strat Cancer Gene Therap 2016:61-85. [DOI:10.1007/978-3-319-42934-2_5] [PMID]
27. Van Lint S, Renmans D, Broos K, Goethals L, Maenhout S, Benteyn D, et al. Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol Res 2016; 4(2):146-56. [DOI:10.1158/2326-6066.CIR-15-0163] [PMID]
28. Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol 2019;19(6):383-97. [DOI:10.1038/s41577-019-0143-6] [PMID]
29. Te Velthuis AJ, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 2016;14(8):479-93. [DOI:10.1038/nrmicro.2016.87] [PMID] [PMCID]
30. Feldman RA, Fuhr R, Smolenov I, Ribeiro AM, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019;37(25):3326-34. [DOI:10.1016/j.vaccine.2019.04.074] [PMID]
31. Davis BM, Rall GF, Schnell MJ. Everything you always wanted to know about rabies virus (but were afraid to ask). Ann Rev Virol 2015;2:451-71. [] [PMID] [PMCID]
32. Wobessi JNS, Kenmoe S, Mahamat G, Belobo JTE, Emoh CPD, Efietngab AN, et al. Incidence and seroprevalence of rabies virus in humans, dogs and other animal species in Africa, a systematic review and meta-analysis. One Health 2021;13:100285. [DOI:10.1016/j.onehlt.2021.100285] [PMID] [PMCID]
33. Banyard AC, Fooks AR. Rabies life cycle, transmission and pathogenesis. Rabies and Rabies Vaccines: Springer; 2020. p. 1-10. [DOI:10.1007/978-3-030-21084-7_1]
34. Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, et al. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl Trop Dis 2016;10(6):e0004746. [DOI:10.1371/journal.pntd.0004746] [PMID] [PMCID]
35. Salimi V, Viegas M, Trento A, Agoti CN, Anderson LJ, Avadhanula V, et al. Proposal for human respiratory syncytial virus nomenclature below the species level. Emerging infectious diseases 2021;27(6). [PMCID]
36. Piedimonte G, Perez MK. Respiratory syncytial virus infection and bronchiolitis. Pediatr Rev 2014;35(12):519-30. [DOI:10.1542/pir.35.12.519] [PMID] [PMCID]
37. Espeseth AS, Cejas PJ, Citron MP, Wang D, DiStefano DJ, Callahan C, et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines 2020;5(1):1-14. [DOI:10.1038/s41541-020-0163-z] [PMID] [PMCID]
38. Rodriguez Galvan J, Donner B, Veseley CH, Reardon P, Forsythe HM, Howe J, et al. Human Parainfluenza Virus 3 Phosphoprotein Is a Tetramer and Shares Structural and Interaction Features with Ebola Phosphoprotein VP35. Biomolecules 2021;11(11):1603. [DOI:10.3390/biom11111603] [PMID] [PMCID]
39. Russell CJ, Penkert RR, Kim S, Hurwitz JL. Human metapneumovirus: a largely unrecognized threat to human health. Pathogens 2020;9(2):109. [] [PMID] [PMCID]
40. Shaw C, Lee H, Knightly C, Kalidindi S, Zaks T, Smolenov I, et al., editors. 2754. Phase 1 Trial of an mRNA-Based Combination Vaccine Against hMPV and PIV3. Open Forum Infect Dis 2019;6:S970 [DOI:10.1093/ofid/ofz360.2431] [PMCID]
41. Schottstedt V, Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, et al. Human cytomegalovirus (HCMV)-revised. Transfus Med Hemother 2010;37(6):365. [DOI:10.1159/000322141] [PMID] [PMCID]
42. Nelson CS, Jenks JA, Pardi N, Goodwin M, Roark H, Edwards W, et al. Human cytomegalovirus glycoprotein B nucleoside-modified mRNA vaccine elicits antibody responses with greater durability and breadth than MF59-adjuvanted gB protein immunization. J Vir 2020;94(9):e00186-20. [DOI:10.1128/JVI.00186-20] [PMID] [PMCID]
43. Noorbakhsh F, Abdolmohammadi K, Fatahi Y, Dalili H, Rasoolinejad M, Rezaei F, et al. Zika virus infection, basic and clinical aspects: A review article. Iran J Public Health 2019;48(1):20. [] [PMID] [PMCID]
44. Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. Modified mRNA vaccines protect against Zika virus infection. Cell 2017;168(6):1114-25. e10. [DOI:10.1016/j.cell.2017.02.017] [PMID] [PMCID]
45. Cohen JI. Vaccine development for Epstein-Barr virus. Human Herpesviruses 2018:477-93. [DOI:10.1007/978-981-10-7230-7_22] [PMID] [PMCID]
46. Ambrosioni J, Blanco JL, Reyes-Urueña JM, Davies M-A, Sued O, Marcos MA, et al. Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV 2021;8(5):e294-e305. [DOI:10.1016/S2352-3018(21)00070-9] [PMID]
47. Blut A. German Advisory Committee Blood (Arbeitskreis Blut), Subgroup 'Assessment of Pathogens Transmissible by Blood'Human Immunodeficiency Virus (HIV). Transfus Med Hemother 2016;43(3):203-9. [DOI:10.1159/000445852] [PMID] [PMCID]
48. Bogers WM, Oostermeijer H, Mooij P, Koopman G, Verschoor EJ, Davis D, et al. Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis 2015;211(6):947-55. [] [PMID] [PMCID]
49. Esteban I, Pastor-Quiñones C, Usero L, Plana M, García F, Leal L. In the Era of mRNA Vaccines, Is There Any Hope for HIV Functional Cure? Viruses 2021;13(3):501. [DOI:10.3390/v13030501] [PMID] [PMCID]
50. Laczkó D, Hogan MJ, Toulmin SA, Hicks P, Lederer K, Gaudette BT, et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 2020;53(4):724-32. e7. [DOI:10.1016/j.immuni.2020.07.019] [PMID] [PMCID]
51. Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W, et al. Leveraging mRNA Sequences and Nanoparticles to Deliver SARS‐CoV‐2 Antigens In Vivo. Adv Material 2020;32(40):2004452. [DOI:10.1002/adma.202004452] [PMID] [PMCID]
52. Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020;586(7830):589-93. [DOI:10.1038/s41586-020-2639-4] [PMID]
53. Lu J, Lu G, Tan S, Xia J, Xiong H, Yu X, et al. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a strong antiviral-like immune response in mice. Cell research 2020;30(10):936-9. [DOI:10.1038/s41422-020-00392-7] [PMID] [PMCID]
54. Zhang N-N, Li X-F, Deng Y-Q, Zhao H, Huang Y-J, Yang G, et al. A thermostable mRNA vaccine against COVID-19. Cell 2020;182(5):1271-83. e16. [DOI:10.1016/j.cell.2020.07.024] [PMID] [PMCID]
55. Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020;586(7830):594-9. [DOI:10.1038/s41586-020-2814-7] [PMID]
56. Rockman S, Laurie K, Parkes S, Wheatley A, Barr I. New technologies for influenza vaccines. Microorganisms 2020;8:1745. [DOI:10.3390/microorganisms8111745] [PMID] [PMCID]
57. Walsh EE, Frenck Jr RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. New Eng J Med 2020;383(25):2439-50. [DOI:10.1056/NEJMoa2027906] [PMID] [PMCID]
58. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New Eng J Med 2020;383:2603-15 [DOI:10.1056/NEJMoa2034577] [PMID] [PMCID]
59. Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol 2009;7(3):226-36. [DOI:10.1038/nrmicro2090] [PMID] [PMCID]
60. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA vaccine against SARS-CoV-2-preliminary report. New Eng J Med 2020;383:1920-31 [DOI:10.1056/NEJMoa2022483] [PMID] [PMCID]
61. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov 2018;17(4):261-79. [DOI:10.1038/nrd.2017.243] [PMID] [PMCID]
62. Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol 2019:594. [DOI:10.3389/fimmu.2019.00594] [PMID] [PMCID]
63. Whitehead KA, Dahlman JE, Langer RS, Anderson DG. Silencing or stimulation? siRNA delivery and the immune system. Annual Rev Chem Biomol Eng 2011;2:77-96. [DOI:10.1146/annurev-chembioeng-061010-114133] [PMID]
64. Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Rel 2015;217:345-51. [DOI:10.1016/j.jconrel.2015.08.007] [PMID] [PMCID]
65. Zhou B, Meliopoulos VA, Wang W, Lin X, Stucker KM, Halpin RA, et al. Reversion of cold-adapted live attenuated influenza vaccine into a pathogenic virus. J Virol 2016;90(19):8454-63. [DOI:10.1128/JVI.00163-16] [PMID] [PMCID]
66. Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotech 2012;30(12):1210-6. [DOI:10.1038/nbt.2436] [PMID]
67. Lindgren G, Ols S, Liang F, Thompson EA, Lin A, Hellgren F, et al. Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells. Front Immunol 2017;8:1539. [DOI:10.3389/fimmu.2017.01539] [PMID] [PMCID]
68. Lutz J, Lazzaro S, Habbeddine M, Schmidt KE, Baumhof P, Mui BL, et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2017;2(1):1-9. [DOI:10.1038/s41541-017-0032-6] [PMID] [PMCID]
69. Smith DM, Simon JK, Baker Jr JR. Applications of nanotechnology for immunology. Nat Rev Immunol 2013;13(8):592-605. [DOI:10.1038/nri3488] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb