Volume 33, Issue 4 (July 2022)                   Studies in Medical Sciences 2022, 33(4): 234-243 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ezlegini F, Eftekhari A, Firoozray M. EVALUATION OF GLUTATHIONE PEROXIDE ACTIVITY AND OXIDATIVE STRESS IN TYPE 2 DIABETIC PATIENTS AND THEIR RELATIONSHIP WITH SERUM GLUCOSE LEVEL AND BLOOD LIPID PARAMETERS IN A CASE-CONTROL STUDY. Studies in Medical Sciences 2022; 33 (4) :234-243
URL: http://umj.umsu.ac.ir/article-1-5742-en.html
Professor, Department of Biochemistry, Islamic Azad University Shahrod Branch, shahrod, Iran (Corresponding Author) , firoozraim@yahoo.com
Abstract:   (2065 Views)
Background & Aims: Diabetes has been the most common metabolic disorder in recent decades. Oxidative stress and its related factors play an important role in the onset and complications of diabetes. In this study, glutathione peroxidase activity and oxidative stress indices in serum of type 2 diabetes patients and their correlation with blood glucose and lipid parameters were evaluated.
Materials & Methods: This is a case-control study. 50 healthy people (24 men and 26 women) and 50 diabetic people (25 men and 25 women) were randomly selected. Following a 12-hour fasting condition, the blood samples were taken and the sera were isolated. Fasting blood sugar, lipid profiles, lipid peroxidation, total antioxidant status, and glutathione peroxidase activity were measured by relevant protocols. All information was analyzed using SPSS software version 16. A significance level of p ≤0.05 was considered.
Results: Serum glutathione peroxidase activity and total antioxidant status in the patient group had a significant decrease in comparison with the control group. Serum levels of malondialdehyde, FBS, TG, VLDL-C, and HbA1c increased significantly in the patient group than in the control group. Statistical analysis showed a significant and direct correlation between glutathione peroxidase activity and TAC and HDL-C levels, and a significant and inverse correlation between glutathione peroxidase activity and serum MDA, HbA1C, and FBS levels. It was also shown that there was a significant and direct correlation between MDA serum concentration and levels of HbA1C, TG, FBS, and VLDL-C. However, there was a significant and inverse correlation between serum TAC concentration and HbA1C, TG, FBS, TC, and VLDL-C levels.
Conclusion: Oxidative stress is a major contributor in the development of diabetes and its complications, so that the decrease in the level of antioxidative factors and the increase in the level of oxidants are closely related to the metabolic disorder of carbohydrates and lipids.
Full-Text [PDF 649 kb]   (1135 Downloads)    
Type of Study: Research | Subject: بیوشیمی

References
1. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014;37(Supplement 1):S81-S90. [DOI:10.2337/dc14-S081] [PMID]
2. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Prac 2010;87(1):4-14. [DOI:10.1016/j.diabres.2009.10.007] [PMID]
3. Turrens JF. Mitochondrial formation of reactive oxygen species. J physiol 2003;552(2):335-44. [DOI:10.1113/jphysiol.2003.049478] [PMID] [PMCID]
4. Ding Y, Kantarci A, Hasturk H, Trackman PC, Malabanan A, Van Dyke TE. Activation of RAGE induces elevated O2− generation by mononuclear phagocytes in diabetes. J Leuk Biol 2007;81(2):520-7. [DOI:10.1189/jlb.0406262] [PMID] [PMCID]
5. Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M. Hyperglycemia and glycation in diabetic complications. Antiox Redox Sign 2009;11(12):3071-109. [DOI:10.1089/ars.2009.2484] [PMID]
6. Sunde RA, Hoekstra WG. Structure, synthesis and function of glutathione peroxidase. Nutr Rev 1980;38(8):265-73. [DOI:10.1111/j.1753-4887.1980.tb05957.x] [PMID]
7. Sindhu RK, Koo JR, Roberts CK, Vaziri ND. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapies. Clin Experim Hypertens 2004;26(1):43-53. [DOI:10.1081/CEH-120027330] [PMID]
8. Sies H. Oxidative stress: Elsevier; 2013. [URL]
9. Ozdemır G, Ozden M, Maral H, Kuskay S, Cetınalp P, Tarkun I. Malondialdehyde, glutathione, glutathione peroxidase and homocysteine levels in type 2 diabetic patients with and without microalbuminuria. Ann Clin Biochem 2005;42(2):99-104. [DOI:10.1258/0004563053492838] [PMID]
10. Larejani B, Zahedi F. Epidemiology of diabetes mellitus in Iran. Iran J Diabet Metabol 2001;1(1):1-8. [Google Scholar]
11. Esteghamati A, Etemad K, Koohpayehzadeh J, Abbasi M, Meysamie A, Noshad S, et al. Trends in the prevalence of diabetes and impaired fasting glucose in association with obesity in Iran: 2005-2011. Diabet Res Clin Prac 2014;103(2):319-27. [DOI:10.1016/j.diabres.2013.12.034] [PMID]
12. Sarayani A, Rashidian A, Gholami K. Low utilisation of diabetes medicines in Iran, despite their affordability (2000-2012): a time-series and benchmarking study. BMJ Open 2014;4(10):e005859. [DOI:10.1136/bmjopen-2014-005859] [PMID] [PMCID]
13. LeRoith D. β-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 2002;113(6):3-11. [DOI:10.1016/S0002-9343(02)01276-7] [PMID]
14. Parhofer KG. Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabet Metabol J 2015;39(5):353-62. [DOI:10.4093/dmj.2015.39.5.353] [PMID] [PMCID]
15. Marcovecchio ML, Lucantoni M, Chiarelli F. Role of chronic and acute hyperglycemia in the development of diabetes complications. Diabet Tech Therapeut 2011;13(3):389-94. [DOI:10.1089/dia.2010.0146] [PMID]
16. Chikezie PC, Ojiako OA, Ogbuji AC. Oxidative stress in diabetes mellitus. Int J Biol Chem 2015;9(3):92-109. [DOI:10.3923/ijbc.2015.92.109]
17. Halliwell B. Antioxidants in human health and disease. Annual Rev Nutr 1996;16(1):33-50. [DOI:10.1146/annurev.nu.16.070196.000341] [PMID]
18. Goyal R, Singhai M, Faizy AF. Glutathione peroxidase activity in obese and nonobese diabetic patients and role of hyperglycemia in oxidative stress. J Midlife Health 2011;2(2):72. [DOI:10.4103/0976-7800.92529] [PMID] [PMCID]
19. Said NS, Hadhoud KM, Nada WM, El Tarhouny SA. Superoxide dismutase, glutathione peroxidase and vitamin E in patients with diabetic retinopathy. Life Sci J 2013;10:1851-6. [Google Scholar]
20. Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, et al. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 2013;5(3):213. [DOI:10.4103/1947-2714.109193] [PMID] [PMCID]
21. Davina Hijam SR, Th. Premchand and W.Gyaneshwar. A study on glutathione peroxidase and malondialdehyde in type 2 diabetes. 3rd World Congress on Diabetes & Metabolism; September 24-26, 2012. [URL]
22. Celik S, Akkaya H. Total antioxidant capacity, catalase and superoxide dismutase on rats before and after diabetes. J Anim Veterin Adv 2009;8(8):1503-8. [Google Scholar]
23. Capas M, Kaner G, Soylu M, Inanc N, Basmisirli E. The relationship between plasma total antioxidant capacity and dietary antioxidant status in adults with type 2 diabetes. Prog Nutr 2018;20(1):67-75. [Google Scholar]
24. Kusano C, Ferrari B. Total antioxidant capacity: a biomarker in biomedical and nutritional studies. J Cell Mol Biol 2008;7(1):1-15. [Google Scholar]
25. West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000;17(3):171-80. [DOI:10.1046/j.1464-5491.2000.00259.x] [PMID]
26. Esterbauer H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 1993;57(5):779S-86S. [DOI:10.1093/ajcn/57.5.779S] [PMID]
27. Sato Y, Hotta N, Sakamoto N, Matsuoka S, Ohishi N, Yagi K. Lipid peroxide level in plasma of diabetic patients. Biochem Med 1979;21(1):104-7. [DOI:10.1016/0006-2944(79)90061-9] [PMID]
28. Opara EC, Abdel-Rahman E, Soliman S, Kamel WA, Souka S, Lowe JE, et al. Depletion of total antioxidant capacity in type 2 diabetes. Metab Clin Exp 1999;48(11):1414-7. [DOI:10.1016/S0026-0495(99)90152-X] [PMID]
29. Manohar SM, Vaikasuvu SR, Deepthi K, Sachan A, Narasimha SRPVL. An association of hyperglycemia with plasma malondialdehyde and atherogenic lipid risk factors in newly diagnosed Type 2 diabetic patients. J Res Med Sci 2013;18(2):89. [PMCID]
30. Noberasco G, Odetti P, Boeri D, Maiello M, Adezati L. Malondialdehyde (MDA) level in diabetic subjects. Relationship with blood glucose and glycosylated hemoglobin. Biomed Pharmacother 1991;45(4-5):193-6. [DOI:10.1016/0753-3322(91)90107-5] [PMID]
31. Hamad MS, Khalaf SJ, Sarhat ER. Relationship between malondialdehyde activity (MDA) &Lipid Profile in Diabetic Patients. Tikret J Pharmaceut Sci 2009;5(1):27-32. [Google Scholar]
32. Zare-Mirzaie A, Kazeminezhad B, Akbari Ghouchani M. The Correlation Between Serum Vitamin D Level and Total Antioxidant Capacity in diabetic and Non-diabetic Subjects in Iran. Iran J Pathol 2018;13(2):212-9. [DOI:10.30699/ijp.13.2.212] [PMID] [PMCID]
33. Pieme CA, Tatangmo JrmA, Simo G, Nya PCB, Moor VJA, Moukette BM, et al. Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes. BMC Res Notes;10(1):141. [DOI:10.1186/s13104-017-2463-6] [PMID] [PMCID]
34. Yang R-L, Shi Y-H, Hao G, Li W, Le G-W. Increasing oxidative stress with progressive hyperlipidemia in human: relation between malondialdehyde and atherogenic index. J Clin Biochem Nutr 2008;43(3):154-8. [DOI:10.3164/jcbn.2008044] [PMID] [PMCID]
35. Kim WY, Kim MH. The change of lipid metabolism and immune function caused by antioxidant material in the hypercholesterolemic elderly women in Korea. Korean J Nutr 2005;38(1):67-75. [Google Scholar]
36. Bagri P, Ali M, Aeri V, Bhowmik M, Sultana S. Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem Toxicol 2009;47(1):50-4. [DOI:10.1016/j.fct.2008.09.058] [PMID]
37. Al-Rawi NH. Oxidative stress, antioxidant status and lipid profile in the saliva of type 2 diabetics. Diabetes and Vasc Dis Res 2011;8(1):22-8. [DOI:10.1177/1479164110390243] [PMID]
38. Tang L-Q, Wei W, Chen L-M, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol 2006;108(1):109-15. [DOI:10.1016/j.jep.2006.04.019] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb