Volume 34, Issue 11 (February 2024)                   Studies in Medical Sciences 2024, 34(11): 675-683 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi Saatlou H, golestani imani B. EVALUATION OF ANTICANCER EFFECT OF RECOMBINANT AZURIN TOXIN ON BREAST CANCER CELL LINE. Studies in Medical Sciences 2024; 34 (11) :675-683
URL: http://umj.umsu.ac.ir/article-1-5622-en.html
Assistant Professor of Genetics, Department of Biology, Urmia branch, Islamic Azad University , golestani_bahram@yahoo.com
Abstract:   (764 Views)
Background & Aims: Breast cancer is the most common type of malignancy among women. Today, various methods of chemotherapy, surgery, and radiation therapy are used to treat cancer. However, among the disadvantages and side effects of these methods are the destruction of normal cells. This has led researchers to turn to new treatment methods with low side effects. Azurin is a direct bacterial redox metalloprotein with cytotoxic effects produced by Pseudomonas aeruginosa. Recombinant azurin toxin can be used to treat breast cancer by reducing side effects on normal cells. The aim of this study was to evaluate the anticancer effect of recombinant azurin toxin on breast cancer cell line.
Materials & Methods: In this experimental study, after cloning and expression of recombinant azurin in E. coli, the cytotoxic effect of different concentrations of azurin on MCF7 breast cancer cells and normal HEK293 cells was evaluated by MTT assay.
Results: Azurin at all concentrations and even at a concentration of 1 mg/ml had a potential cytotoxic effect on MCF7 cell line than HEK293 cell line. The increase in cytotoxicity and decrease in the survival of cancer cells was associated with the increase in the concentration of azurin protein; therefore, the percentage of cytotoxicity of this protein in the MCF7 cell line was directly related to the concentration of recombinant protein, and the percentage of survival of cancer cells was inversely related to the concentration of recombinant protein.
Conclusion: The results of this study showed that azurin can partly act selectively against breast cancer cell. These findings are hopeful for the use of azurin as a new and low-cost therapeutic agent for the treatment of breast cancer.
Full-Text [PDF 603 kb]   (340 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

References
1. Van De KM, Mc S, Brunori M, Van BJ, Fc H, Gw C. Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome c551 and nitrite reductase. Eur J Biochem 1990;194(1):109-18. [DOI:10.1111/j.1432-1033.1990.tb19434.x] [PMID]
2. Karpiński TM, Szkaradkiewicz AK. Anti-cancer peptides from bacteria. Bangl J Pharmacol 2013;8(3):343-8. [DOI:10.3329/bjp.v8i3.15704]
3. Fialho A, Das Gupta T, Chakrabarty A. Designing promiscuous drugs? Look at what nature made! Lett Drug Des Discov 2007;4(1):40-3.‏ [DOI:10.2174/157018007778992946]
4. Bernardes N, Seruca R, Chakrabarty AM, Fialho AM. Microbial-based therapy of cancer: current progress and future prospects. Bioeng Bugs 2010;1(3):178-90. [DOI:10.4161/bbug.1.3.10903] [PMID] []
5. Yamada T, Hiraoka Y, Ikehata M, Kimbara K, Avner BS, Das Gupta TK, et al. Apoptosis or growth arrest: Modulation of tumor suppressor p53's specificity by bacterial redox protein azurin. Proc Natl Acad Sci U S A 2004;101(14):4770-5. [DOI:10.1073/pnas.0400899101] [PMID] []
6. Nguyen C, Nguyen VD. Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. Biomed Res Int 2016;2016:8490482.‏ [DOI:10.1155/2016/8490482] [PMID] []
7. Gao M, Zhou J, Su Z, Huang Y. Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein-protein interactions and cancer therapy: Azurin Hijacks Cellular Signaling Networks. Protein Sci 2017;26(12):2334-41.. [DOI:10.1002/pro.3310] [PMID] []
8. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C. Estimated cancer incidence, mortality and prevalence worldwide in 2012. Int Agency for Res on Cancer 2012. [URL]
9. Nooshinfar E, Bashash D. Melatonin and its importance in breast cancer prevention and treatment (A purposed review article). Iran J Obstet Gynecol Infertil 2014;17:10-21. [Google Scholar]
10. Dao KL, Hanson RN. Targeting the estrogen receptor using steroid-therapeutic drug conjugates (hybrids). Bioconjug Chem 2012b;23(11):2139-58. [DOI:10.1021/bc300378e] [PMID]
11. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018;5(2):77-106. [DOI:10.1016/j.gendis.2018.05.001] [PMID] []
12. Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis 2011;14(3):355-69. [DOI:10.1007/s10456-011-9220-6] [PMID]
13. Bernardes N, Ribeiro AS, Abreu S, Mota B, Matos RG, Arraiano CM, et al. The bacterial protein azurin impairs invasion and FAK/Src signaling in P-cadherin-overexpressing breast cancer cell models. PLoS One 2013;8(7):e69023. [DOI:10.1371/journal.pone.0069023] [PMID] []
14. Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, et al. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci U S A 2002;99(22):14098-103.. [DOI:10.1073/pnas.222539699] [PMID] []
15. Fialho AM, Bernardes N, Chakrabarty AM. Exploring the anticancer potential of the bacterial protein azurin. Aims Microbiol 2016;2(3):292-303. [DOI:10.3934/microbiol.2016.3.292]
16. Taherimehr Z, Zaboli M, Torkzadeh-Mahani M. New insight into the molecular mechanism of the trehalose effect on urate oxidase stability. J Biomol Struct Dyn 2022;40(4):1461-71. [DOI:10.1080/07391102.2020.1828167] [PMID]
17. Shandiz SAS, Sharifian F, Behboodi S, Ghodratpour F, Baghbani-Arani F. Evaluation of metastasis suppressor genes expression and in vitro anti-cancer effects of Zinc Oxide Nanoparticles in human breast cancer cell lines MCF-7 and T47D. Avicenna J Med Biotechnol 2021;13(1):9-14. [PMID]
18. Ghodratpour F, Fahimeh, Shandiz S. Cytotoxic effects of Zn oxide nanoparticles against breast cancer T47D cells and NM23 gene expression. Feyz 2018;6:589-94. [Google Scholar]
19. Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017;31:15-30.. [DOI:10.1016/j.drup.2017.05.002] [PMID]
20. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: Renaissance of an old concept. Int J Microbiol 2016;2016:8451728. [DOI:10.1155/2016/8451728] [PMID] []
21. Coley WB. Contribution to the knowledge of sarcoma. Ann Surg 1891;14:199-220. [DOI:10.1097/00000658-189112000-00015] [PMID] []
22. Chakrabarty AM, Bernardes N, Fialho AM. Bacterial proteins and peptides in cancer therapy: today and tomorrow: Today and tomorrow. Bioengineered 2014;5(4):234-42. [DOI:10.4161/bioe.29266] [PMID] []
23. Yamada T, Fialho AM, Punj V, Bratescu L, Gupta TK, Chakrabarty AM. Internalization of bacterial redox protein azurin in mammalian cells: entry domain and specificity. Cell Microbiol 2005;7(10):1418-31. [DOI:10.1111/j.1462-5822.2005.00567.x] [PMID]
24. Mahfouz M, Hashimoto W, Gupta TK, Chakrabarty AM. Bacterial proteins and CpG-rich extrachromosomal DNA in potential cancer therapy. Plasmid 2007;57(1):4-17. [DOI:10.1016/j.plasmid.2006.11.001] [PMID]
25. Tangri S, Ishioka GY, Huang X, Sidney J, Southwood S, Fikes J, et al. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med2001;194(6):833-46. [DOI:10.1084/jem.194.6.833] [PMID] []
26. Vijgenboom E, Busch JE, Canters GW. In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR. Microbiology 1997;143 (Pt 9)(9):2853-63.‏ [DOI:10.1099/00221287-143-9-2853] [PMID]
27. Paydarnia N, Khoshtinat Nikkhoi S, Fakhravar A, Mehdiabdol M, Heydarzadeh H, Ranjbar S. Synergistic effect of granzyme B-azurin fusion protein on breast cancer cells. Mol Biol Rep 2019;46(3):3129-40.‏ [DOI:10.1007/s11033-019-04767-x] [PMID]
28. Mohamed MS, Said A, Howayada M. Azurin as antitumor protein and its effect on the cancer cell lines. Curr Res J Biol Sci 2010; (2):396-401. [URL]
29. Kim UK. Recombinant Azurin from Pseudomonas aeruginosa Induces Apoptotic Cell Death in Oral Squamous Carcinoma Cells. Int J Oral biology 2010;2:35-42. [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb