Volume 32, Issue 8 (November 2021)                   Studies in Medical Sciences 2021, 32(8): 619-630 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahhosseini S, Ravasi A, Nouri R. SIRTUIN 6 GENE EXPRESSION AND TELOMERE LENGTH CHANGES IN OLD RAT HEPATOCYTES AFTER 6 WEEKS SWIMMING EXERCISE AND RESVERATROL SUPPLEMENTATION FEEDING. Studies in Medical Sciences 2021; 32 (8) :619-630
URL: http://umj.umsu.ac.ir/article-1-5571-en.html
Ph.D. Candidate, Department of sports physiology, University of Tehran, Kish international campus (Corresponding Author) , sr.shahhosseini@ut.ac.ir
Abstract:   (4516 Views)
Background & Aims: telomere erosion is considered to be the main cause of aging. The present study aimed to determine the interactive effect of high-intense interval training and resveratrol consumption on telomere length and expression sirtuin 6 genes of hepatocytes in elderly rats.
Materials & Methods: 25 Wistar male rats were divided into 5 groups. 1. Control group that did not exercise, 2. The solvent group that only received the solvent, 3. Exercise actively group that swam 20 seconds with 10 seconds rest in 6 weeks and 3 sessions per week, 4. Supplement group that received resveratrol 10 ml/kg per day, and 5. Combination of exercise and supplement goup that uses combination of exercise and supplement. Quantitative Real time PCR was used to measure the expression levels of sirtuin 6 gene and telomere length. For data analysis, One-way analysis of variance, and tukey tests were done usingSPSS 25 software.
Results: Resveratrol consumption and exercise significantly increased telomere length compared to control in order (P=0.000, 0.001) and solvent (p=0.007, 0.004) groups, respectively. The expression of the sirtuin 6 gene was not affected by resveratrol (0.984), while exercise increased the expression of the sirtuin 6 gene (0.013). The combination of resveratrol supplementation and exercise did not double telomere length (0.395) and sirtuin 6 expression (0.502).
Conclusion: The interaction of very  high-intensity interval training and resveratrol supplementation does not double the expression of the sirtuin 6 gene and telomere length of old rat liver cells. The molecular mechanism for slowing telomere erosion is probably complex and unaffected by mentioned concurrent interventions.
Full-Text [PDF 707 kb]   (1277 Downloads)    
Type of Study: Research | Subject: بیوشیمی

References
1. Aurelia S, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity. Ageing Res Rev 2021; (101422). [DOI:10.1016/j.arr.2021.101422] [PMID]
2. Baiocchi L, Glaser S, Francis H, Kennedy L, Felli E, Alpini G et al. Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatol Commun 2021. [DOI:10.1002/hep4.1725] [PMID] [PMCID]
3. Soares JP, Silva AM, Oliveira MM, Peixoto F, Gaivao I, Mota MP. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. Age 2015; 37(3): 61. [DOI:10.1007/s11357-015-9799-4] [PMID] [PMCID]
4. Zurek M, Altschmied J, Kohlgruber S, Ale-Agha N, Haendeler J. Role of telomerase in the cardiovascular system. Genes 2016; 7(6): 29. [DOI:10.3390/genes7060029] [PMID] [PMCID]
5. German NJ, Haigis MC. Sirtuins and the metabolic hurdles in cancer. Curr Biol 2015; 25(13): 569-583. [DOI:10.1016/j.cub.2015.05.012] [PMID] [PMCID]
6. Verdin E. NAD+ in aging, metabolism, and neurodegeneration. Science 2015; 350(6265): 1208-1213. [DOI:10.1126/science.aac4854] [PMID]
7. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 2015; 25(3): 138-145. [DOI:10.1016/j.tem.2013.12.001] [PMID] [PMCID]
8. Jos S, Aouti S, Unni S, Haridass V, Gogoi H, Deshmukh P et al. In silico screening of small molecule modulators and their binding studies against human sirtuin-6 protein. J Biomol Struct Dyn 2021; 1-12. [DOI:10.1080/07391102.2021.1938229] [PMID]
9. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Li Y. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2‏. Cell Res 2016; 26(2): 190. [DOI:10.1038/cr.2016.4] [PMID] [PMCID]
10. Di Meo, S, Napolitano G, Venditti P. Mediators of physical activity protection against ROS-linked skeletal muscle damage. Int J Mol Sci 2019; 20(12): 3024. [DOI:10.3390/ijms20123024] [PMID] [PMCID]
11. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi Rad M et al. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018; 6(3): 91. [DOI:10.3390/biomedicines6030091] [PMID] [PMCID]
12. Liang Q, Wang XP, Chen TS. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS. Apoptosis 2014; 19(9): 1354-1363. [DOI:10.1007/s10495-014-1012-1] [PMID]
13. Mosallanezhad Z, Nikbakht H, Gaeini AA, Gholami M. The effect of high-intensity interval training on telomere length of leukocytes in sedentary young women. Adv Environ Biol 2014; 841-846. [URL]
14. Brandao CF, Nonino CB, De Carvalho FG, Nicoletti CF, Noronha NY, San Martin R et al. The effects of short-term combined exercise training on telomere length in obese women: a prospective, interventional study. Sports Med-Open 2020; 6(1): 1-7. [DOI:10.1186/s40798-020-0235-7] [PMID] [PMCID]
15. Al-Hussaini H, Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicol Appl Pharmacol 2018; 339:97-109 [DOI:10.1016/j.taap.2017.11.025] [PMID]
16. Avdatek F, Birdane Yom Turkmen RU, Demiral H. Ameliorative effect of resveratrol on testicular oxidative stress, spermatological parameters and DNA damage in glyphosate‐based herbicide‐exposed rats. Andrologia 2018; 50(7): e13036. [DOI:10.1111/and.13036] [PMID]
17. Hooshmand-Moghadam B, Eskandari M, Golestani F, Rezae S, Mahmoudi N, Gaeini AA. The effect of 12-week resistance exercise training on serum levels of cellular aging process parameters in elderly men. Exp Gerontol 2020; 141:111090. [DOI:10.1016/j.exger.2020.111090] [PMID]
18. Liao ZY, Chen JL, Xiao MH, Sun Y, Zhao YX, Pu D et al. The effect of exercise, resveratrol or their combination on Sarcopenia in aged rats via regulation of AMPK/Sirt1 pathway. Exp Gerontol 2017; 98(1): 177-183. [DOI:10.1016/j.exger.2017.08.032] [PMID]
19. San Hipolito Luengo A, Alcaide A, Ramos Gonzalez M, Cercas E, Vallejo S, Romero A, et all. Dual effects of resveratrol on cell death and proliferation of colon cancer cells. Nutr Cancer 2017; 69(7): 1019-1027. [DOI:10.1080/01635581.2017.1359309] [PMID]
20. Yang SJ, Lim Y. Resveratrol ameliorates hepatic metaflammation and inhibits NLRP3 inflammasome activation. Metabolism 2014; 63(5): 693-701. [DOI:10.1016/j.metabol.2014.02.003] [PMID]
21. Lezi E, Burns JM, Swerdlow RH. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging 2014; 35(11): 2574-2583. [DOI:10.1016/j.neurobiolaging.2014.05.033] [PMID] [PMCID]
22. Monserrat Hernandez-Hernandez E, Serrano Garcia C, Antonio Vazquez Roque R, Diaz A, Monroy E, Rodriguez Moreno A et al. Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats. Synapse 2016; 70(5): 206-217. [DOI:10.1002/syn.21888] [PMID]
23. Amirazodi F, Mehrabi A, Amirazodi M, Parsania S, Rajabzadeh MA. The Combination Effects of Resveratrol and Swimming HIIT Exercise on Novel Object Recognition and Open-field Tasks in Aged Rats. Exp Aging Res 2020; 46(4): 336-358. [DOI:10.1080/0361073X.2020.1754015] [PMID]
24. Mehrabi A, Gaeini A, Nouri R, Daryanoosh F. The effect of six-week HIIT swimming exercise and Resveratrol supplementation on the level of SIRT3 in frontal lobe of aged rats. Shifa-yi khatam 2021; 9(2): 48-45. [DOI:10.52547/shefa.9.2.48]
25. Shafiee A, Gaeini AA, Soleimani M, nekouei A, Hadidi V. The effect of eight week of high intensity interval training on expression of mir-210 and ephrinA3 mRNA in soleus muscle healthy male rats. Maj Danishgah-i Ulum-i Pizishki-i Arak 2014; 17(3): 26-34. [Google Scholar]
26. Mahjoub S, Ghadi A, Pourbagher R, Hajian-Tilaki K, Masrour-Roudsari J. Effects of regular treadmill exercise on a DNA oxidative-damage marker and total antioxidant capacity in rat hippocampal tissue. J Clin Neurol 2016; 12(4): 414-418. [DOI:10.3988/jcn.2016.12.4.414] [PMID] [PMCID]
27. Daluz PL, Tanaka L, Brum PC, Dourado PMM, Favarato D, Krieger JE et al. Red wine and equivalent oral pharmacological doses of resveratrol delay vascular aging but do not extend life span in rats. Atherosclerosis 2012; 224: 136-142. [DOI:10.1016/j.atherosclerosis.2012.06.007] [PMID]
28. Huang P, Riordan SM, Heruth DP, Griogoryev DN, Zhang LQ, Ye SQ. A critical role of nicotinamide phosphoribosyl transferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells. Oncotarget 2015; 6(13): 10812. [DOI:10.18632/oncotarget.3580] [PMID] [PMCID]
29. Hassanieh S, Mostoslavsky R. Multitasking Roles of the Mammalian Deacetylase SIRT6. Introd Rev Sirtuins Biol Aging Dis 2018; 117-130. [DOI:10.1016/B978-0-12-813499-3.00009-5]
30. Mikuła-Pietrasik J, Kuczmarska A, Rubiś B, Filas V, Murias M, Zieliński P et al. Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radical Biol Med 2012; 52(11-12): 2234-2245. [DOI:10.1016/j.freeradbiomed.2012.03.014] [PMID]
31. Gutlapalli SD, Kondapaneni V, Toulassi IA, Poudel S, Zeb M, Choudhari J, et al. The effects of resveratrol on telomeres and post myocardial infarction remodeling. Cureus 2020; 12(11). [DOI:10.7759/cureus.11482]
32. Hehar H, Mychasiuk R. The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats following a concussion/mild traumatic brain injury. Neurobiol Dis 2016; 87: 11-18. [DOI:10.1016/j.nbd.2015.12.007] [PMID]
33. Kim JH, Ko JH, Lee DC, Lim I, Bang H. Habitual physical exercise has beneficial effects on telomere length in postmenopausal women. Menopause 2012; 19(10): 1109-1115. [DOI:10.1097/gme.0b013e3182503e97] [PMID]
34. Cheng F, Luk AO, Wu H, Tam CH, Lim CK, Fan B et al. Relative leucocyte telomere length is associated with incident end-stage kidney disease and rapid decline of kidney function in type 2 diabetes: analysis from the Hong Kong Diabetes Register. Diabetologia 2021; 1-12. [DOI:10.1007/s00125-021-05613-1] [PMID] [PMCID]
35. Liu S, Chung MP, Ley B, French S, Elicker BM, Fiorentino. Peripheral blood leucocyte telomere length is associated with progression of interstitial lung disease in systemic sclerosis. Thorax 2021; 76(12): 1186-1192. [DOI:10.1136/thoraxjnl-2020-215918] [PMID]
36. Chen R, Zhan Y. Association between telomere length and Parkinson's disease: a Mendelian randomization study. Neurobiol Aging 2021; 97, 144-e9. [DOI:10.1016/j.neurobiolaging.2020.07.019] [PMID]
37. Yu G, Lu L, Ma Z, Wu S. Genetically Predicted Telomere Length and Its Relationship With Alzheimer's Disease. Front Genet 2021; 12. [DOI:10.3389/fgene.2021.595864] [PMID] [PMCID]
38. Martinez P, Blasco MA. Shorter telomere lengths in patients with severe COVID-19 disease. Aging 2021; 13(1): 1. [DOI:10.18632/aging.202463] [PMID] [PMCID]
39. Duckworth A, Gibbons MA, Allen RJ, Almond H, Beaumont RN, Wood AR et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: a mendelian randomisation study. Lancet Respir Med 2021; 9(3): 285-294. [DOI:10.1016/S2213-2600(20)30364-7]
40. Goswami A, Huda N, Yasmin T, Hosen MI, Hasan AM et al. Association study of leukocyte telomere length and genetic polymorphism within hTERT promoter with type 2 diabetes in Bangladeshi population. Mol Biol Rep 2021; 48(1): 285-295. [DOI:10.1007/s11033-020-06045-7] [PMID]
41. Mathur S, Ardestani A, Parker B, Cappizzi J, Polk D, Thompson PD. Telomere length and cardiorespiratory fitness in marathon runners. J Invest Med 2013; 61(3): 613-615. [DOI:10.2310/JIM.0b013e3182814cc2] [PMID]
42. Ludlow AT, Ludlow LW, Roth SM. Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res Int 2013. [DOI:10.1155/2013/601368] [PMID] [PMCID]
43. Savela S, Saijonmaa O, Strandberg TE, Koistinen P, Strandberg AY, Tilvis RS et al. Physical activity in midlife and telomere length measured in old age. Exp Gerontol 2013; 48(1): 81-84. [DOI:10.1016/j.exger.2012.02.003] [PMID]
44. Zanjirian Z, Afzalpour MA, Sarir H, Niaahmadi M. Effect of Continuous Exercise Training on Protein Levels of SIRT3 and OGG1 in the Liver Tissue of Male Wistar Rats. Maj Danishgah-i Ulum-i Pizishki-i illam 2019; 27(5): 97-107. [DOI:10.29252/sjimu.27.5.97]
45. Gertz M, Nguyen GTT, Fischer F, Suenkel B, Schlicker C, Steegborn C. A Molecular Mechanism for Direct Sirtuin Activation by Resveratrol. Plos One 2012; e49761. [DOI:10.1371/journal.pone.0049761] [PMID] [PMCID]
46. Zhang Y, Yang Z, Xu Z, Wan J, Hua T, Sun Q. Exercise ameliorates insulin resistance and improves SIRT6-mediated insulin signaling transduction in liver of obese rats. Canadian Journal of Physiology and Pharmacology. Can J Physiol Pharmacol 2021; 99(5):506-511. [DOI:10.1139/cjpp-2020-0083] [PMID]
47. Radak Z, Bori Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II. Et al. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radical Biol Med 2011; 51(2): 417-423. [DOI:10.1016/j.freeradbiomed.2011.04.018] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb