1. Frederick C. H and et al. A review of Evaluation of time-dependent strengths of californium neutron sources by decay of 252Cf, 250Cf, and 248Cm: Uncertainties by Monte Carlo method. Appl Radiat Isot 2021;167:109454. [
DOI:10.1016/j.apradiso.2020.109454] [
PMID]
2. Chris Wang CK. Progress in californium-252 neutron brachytherapy. Brachytherapy. Kishi K. InTech; 2012. P. 34-58. [
DOI:10.5772/34172]
3. Fortune E, Gauld I, Wang C. Gamma Dose near a New Miniature Cf‐252 Brachytherapy Source. Med Phys 2011;175:73-6. [
DOI:10.13182/NT11-A12272]
4. Maruyama Y, Yoneda J, Powell D, Kryscio RJ. A review of californium-252 neutron brachytherapy for cervical cancer. Cancer 1991;68(6):1189-97.
https://doi.org/10.1002/1097-0142(19910915)68:6<1189::AID-CNCR2820680602>3.0.CO;2-F [
DOI:10.1002/1097-0142(19910915)68:63.0.CO;2-F] [
PMID]
5. Beach JL, Schroy CB, Ashtari M, Harris MR, Maruyama Y. Boron neutron capture enhancement 252Cf Brachytherapy. Int J Radiat Oncol Biol Phys 1990;18(6):1421-7. [
DOI:10.1016/0360-3016(90)90317-D] [
PMID]
6. Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun 2018;38(1):36. Available from: http://dx.doi.org/10.1186/s40880-018-0280-5. [
DOI:10.1186/s40880-018-0280-5] [
PMID] [
PMCID]
7. Rivard MJ, Zamenhof RG. Moderated 252Cf neutron energy spectra in brain tissue and calculated boron neutron capture dose. Appl Radiat Isot 2004;61(5):753-7. Available from: http://dx.doi.org/10.1016/j.apradiso.2004.05.017. [
DOI:10.1016/j.apradiso.2004.05.017] [
PMID]
8. Ghassoun J, Mostacci D, Molinari V. Detailed dose distribution prediction of 252Cf brachytherapy source with boron loading dose enhancement. Appl Radiat Isot 2010;68:265-70. [
DOI:10.1016/j.apradiso.2009.10.004] [
PMID]
9. Khosroabadi M, Ghorbani M, Rahmani F, Knaup C. Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs. Australas Phys Eng Sci Med 2014;37(3):541-9. Available from: http://dx.doi.org/10.1007/s13246-014-0284-7. [
DOI:10.1007/s13246-014-0284-7] [
PMID]
10. Wang C, Kelm R. SU-FF-T-61: Determination of neutron and gamma dose rates in water surrounding a new interstitial cf-252 brachytherapy source. Med Phys 2009;36(6Part9):2533. Available from: http://dx.doi.org/10.1118/1.3181533 . [
DOI:10.1118/1.3181533]
11. Wang C, Kelm R. Determination of Neutron and Gamma Dose Rates in Water Surrounding a New Interstitial 252Cf Brachytherapy Source. Med Phys 2009; 36(pt 6):2533. [
DOI:10.1118/1.3181533]
12. Al-Saihati I, Naqvi AA. Neutron and gamma-ray doses from a 252Cf brachytherapy source in a water phantom. J Radioanal Nucl Chem 2013;296:963-6. [
DOI:10.1007/s10967-012-2172-5]
13. Ahmadi OL, Tavakoli-Anbaran H. Study of the rate of absorption dose of all rays emitted from the source of 252Cf brachytherapy source using Monte Carlo method. Iran J Radiation Safety Measur 2019; 7(3):29-34 (Persian). [
URL]
14. Ahmadi OL, Tavakoli-Anbaran H. Study of the rate of absorption dose of all rays emitted from the source of 252Cf brachytherapy source using Monte Carlo method. Sains Malays 2020;49(3):693-701. [
DOI:10.17576/jsm-2020-4903-24]
15. Karimi-Shahri K, Izadi-Vasafi GhH, Firoozabadi MM, Ghorbani M. Dosimetric effects of composition, location and size of tissue heterogeneities on 252Cf neutron brachytherapy. Appl Radiat Isot 2021;171:109639. [
DOI:10.1016/j.apradiso.2021.109639] [
PMID]
16. Arianto F, Handayani LT, Budi WS, Basuki P. Determination of Neutron Flux in Brain Cancer Boron Neutron Capture Therapy Using Monte Carlo Simulation. Phys Comm 2022;6(2):79-84. [
DOI:10.15294/physcomm.v6i2.40277]
17. Rivard MJ, Wierzbicki JG, Van den Heuvel F, Martin RC, McMahon RR. Clinical brachytherapy with neutron emitting 252Cf sources and adherence to AAPM TG-43 dosimetry protocol. Med Phys 1999; 26(pt 1):87-96. [
DOI:10.1118/1.598472] [
PMID]
18. Pelowitz D. MCNPX user's manual, LA-CP-07-1473 Version 2.6.0. Los Alamos National Laboratory, 2008. [
URL]
19. Sakurai Y. Depth-Dose-Distribution control for incident beam directionality and irradiation field size in boron neutron capture therapy. J Nucl Sci Technol 2005;42(1):1-7. [
DOI:10.1080/18811248.2005.9726358]
20. Palmer LR, Goorly JT, Kiger WS, Busse PM, Riley KJ, Harling OK et al. Treatmrnt planning and dosimetry for the Harvard -MIT phase I clinical trial of cranial neutron capture therapy. Int J Radiation Oncology Biol Phys 2002;53(pt 5):1361-79. [
DOI:10.1016/S0360-3016(02)02862-6] [
PMID]
21. Rosidah S, Sardjono Y, Sumardi Y. Dose analyze of boron neutron capture therapy (BNCT) at skin cancer melanoma using MCNPX with neutron source from thermal column of kartini reactor. Indonesian J Nucl Sci Technol 2017;2(pt 3):111-23. [
DOI:10.24246/ijpna.v2i3.111-123]
22. Fortune EC. Gamma and neutron dose profiles near a Cf-252 brachytherapy source [dissertation]. Georgia Institute of Technology, 2010. [
Google Scholar]