Volume 35, Issue 8 (November 2024)                   Studies in Medical Sciences 2024, 35(8): 662-674 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khezri S, Farokhi F, Pazhang Y. INVESTIGATION OF THE EFFECT OF COPPER OXIDE NANOPARTICLES ON THE EFFICACY OF METHOTREXATE AND PACLITAXEL IN MCF-7 BREAST CANCER CELLS. Studies in Medical Sciences 2024; 35 (8) :662-674
URL: http://umj.umsu.ac.ir/article-1-6354-en.html
Associate Professor of Anatomical Sciences, Department of Biology, Faculty of Science, Urmia University, Urmia, Iran (Corresponding Author) , f.farokhi@urmia.ac.ir
Abstract:   (119 Views)
Background & Aims: Breast cancer is one of the most common types of cancer in women, resulting from the uncontrolled growth of cells in breast tissue. This study aims to investigate the impact of copper oxide nanoparticles on the efficacy of the chemotherapeutic agents methotrexate and paclitaxel in reducing the growth of MCF-7 breast cancer cells.
Materials & Methods: In this study, MCF-7 cell lines were treated with copper oxide nanoparticles and chemotherapeutic drugs in RPMI-1640 culture medium supplemented with 10% FBS. Cells were exposed to various concentrations of copper oxide nanoparticles (1, 2, 3, 4 µmol/mL), methotrexate (10, 20, 30, 40 µmol/mL), and paclitaxel (2, 4, 6, 8 µmol/mL) for durations of 24, 48, and 72 hours. Cell viability was assessed using the MTT assay, while apoptosis was measured through Hoechst staining and flow cytometry.
Results: The results indicated that the combination of copper oxide nanoparticles with methotrexate and paclitaxel significantly reduced cell growth compared to each drug used alone. The combination of copper oxide nanoparticles with a concentration of 40 μM methotrexate and a concentration of 8 μM paclitaxel showed the greatest reduction in cell growth, equivalent to a 70% and 75% reduction, respectively. Hoechst staining and flow cytometry indicated that the combined treatment increased cell apoptosis by 56.7%.
Conclusion: These findings suggest that copper oxide nanoparticles have potential as an effective agent in breast cancer treatment. The combination of these nanoparticles with methotrexate and paclitaxel may enhance therapeutic efficacy, providing new strategies to address existing challenges in cancer treatment.
Full-Text [PDF 1390 kb]   (114 Downloads)    
Type of Study: Research | Subject: بیوشیمی

References
1. Saeed N, Hamzah I, Mahmood S. The applications of nano-medicine in the breast cancer therapy. J. Phys. Conf. Ser 2021; 1853: 012061. [DOI:10.1088/1742-6596/1853/1/012061]
2. Meneses K, Azuero A, Hassey L, McNees P, Pisu M. Does economic burden influence quality of life in breast cancer survivors? Gynecol. Oncol 2012;124(3):437-43. [DOI:10.1016/j.ygyno.2011.11.038] [PMID] []
3. Uzunoglu H, Korak T, Ergul E, Uren N, Sazci A, Utkan NZ, et al. Association of the nibrin gene (NBN) variants with breast cancer. Biomed. Rep 2016;4(3):369-73. [DOI:10.3892/br.2016.579] [PMID] []
4. Darbemamieh M, Soltani L. Evaluation of anticancer and apoptotic properties of aqueous and ethanolic extracts of Tenebrio molitor (Coleoptera: Tenebrionidae) larvae on breast cancer cells. Stud Med Sci 2020;31(5):354-63. [google scholar]
5. Schmid P, Cortes J, Robson M, Iwata H, Hegg R, Verma S, et al. Abstract OT2-08-02: Capivasertib and paclitaxel in first-line treatment of patients with metastatic triple-negative breast cancer: A phase III trial (CAPItello-290). Cancer Res 2020;80-2. [DOI:10.1158/1538-7445.SABCS19-OT2-08-02]
6. Tanabe M. Combination chemotherapy of mitomycin C and methotrexate was effective on metastatic breast cancer resistant to eribulin, vinorelbine, and bevacizumab after anthracycline, taxane, and capecitabine. Case rep. oncol 2016;9(2):422-6. [DOI:10.1159/000447770] [PMID] []
7. Mokhtar S, Khattab SN, Elkhodairy KA, Teleb M, Bekhit AA, Elzoghby AO, et al. Methotrexate-lactoferrin targeted exemestane cubosomes for synergistic breast cancer therapy. Front. Chem 2022;10:847573. [DOI:10.3389/fchem.2022.847573] [PMID] []
8. Yan-Hua Y, Jia-Wang M, Xiao-Li T. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med 2020;18(12):890-7. [DOI:10.1016/S1875-5364(20)60032-2] [PMID]
9. Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, et al. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed. Pharmacother 2021;141:111824. [DOI:10.1016/j.biopha.2021.111824] [PMID]
10. Oehler JB, Rajapaksha W, Albrecht H. Emerging applications of nanoparticles in the diagnosis and treatment of breast cancer. J. Pers. Med 2024;14(7):723. [DOI:10.3390/jpm14070723] [PMID] []
11. Jiang Q, Zhang M, Sun Q, Yin D, Xuan Z, Yang Y. Enhancing the antitumor effect of doxorubicin with photosensitive metal-organic framework nanoparticles against breast cancer. Mol. Pharmaceutics 2021;18(8):3026-36. [DOI:10.1021/acs.molpharmaceut.1c00249] [PMID]
12. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res. Rev 2013;12(1):376-90. [DOI:10.1016/j.arr.2012.10.004] [PMID]
13. Chota A, George BP, Abrahamse H. Interactions of multidomain pro-apoptotic and anti-apoptotic proteins in cancer cell death. Oncotarget 2021;12(16):1615. [DOI:10.18632/oncotarget.28031] [PMID] []
14. Aghazadeh T, Bakhtiari N, Abdi Rad I, Ramezani F. Liposomal nanoparticles reduce dose-dependent behavior of paclitaxel against MDA-MB 468 breast cancer. Studies in Medical Sciences 2022;32(11):847-56. [DOI:10.52547/umj.32.11.847]
15. Rajah TT, Peine KJ, Du N, Serret CA, Drews NR. Physiological concentrations of genistein and 17β-estradiol inhibit MDA-MB-231 breast cancer cell growth by increasing BAX/BCL-2 and reducing pERK1/2. Anticancer Res 2012;32(4):1181-91. [DOI:10.1158/0008-5472.SABCS11-P3-04-07]
16. Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol 2008;21(9):1726-32. [DOI:10.1021/tx800064j] [PMID]
17. Mahdavi M, Yazdanparast R. Gnidilatimonoein from Daphne mucronata induces differentiation and apoptosis in leukemia cell lines. Arch. Pharmacal Res 2007;30:177-81. [DOI:10.1007/BF02977692] [PMID]
18. Narayani SS, Saravanan S, Ravindran J, Ramasamy M, Chitra J. In vitro anticancer activity of fucoidan extracted from Sargassum cinereum against Caco-2 cells. Int. J. Biol. Macromol 2019;138:618-28. [DOI:10.1016/j.ijbiomac.2019.07.127] [PMID]
19. Soltani L, Darbemamieh M, Mohebi Z, Moarrefzadeh N. Comparison Of Anti-Cancer Effects Of Hydroalcoholic Extract Of Syzygium Aromaticum And Utrica Dioica On Breast Cancer Cells (Mcf-7) And Normal Cells (Huvec). Stud Med Sci 2021;32(3):175-86. [google scholar]
20. Kawiak A, Kostecka A. Regulation of Bcl-2 family proteins in estrogen receptor-positive breast cancer and their implications in endocrine therapy. Cancers 2022;14(2):279. [DOI:10.3390/cancers14020279] [PMID] []
21. Qiu C, Wu Y, Shi Q, Guo Q, Zhang J, Meng Y, et al. Advanced strategies for nucleic acids and small-molecular drugs in combined anticancer therapy. Int. J. Biol. Sci 2023;19(3):789. [DOI:10.7150/ijbs.79328] [PMID] []
22. Jelic MD, Mandic AD, Maricic SM, Srdjenovic BU. Oxidative stress and its role in cancer. J. Cancer Res. Ther 2021;17(1):22-8. [DOI:10.4103/jcrt.JCRT_862_16] [PMID]
23. Krishnakumar N, Sulfikkarali N, RajendraPrasad N, Karthikeyan S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomed. Prev. Nutr 2011;1(4):223-31. [DOI:10.1016/j.bionut.2011.09.003]
24. Shafagh M, Rahmani F, Delirezh N. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran. J. Basic Med. Sci 2015;18(10):993. [PMID: 26730334] [PMCID: PMC4686584]
25. Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol 2020;14(1):1-13. [DOI:10.1049/iet-nbt.2019.0176] [PMID] []
26. Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem. Biophys. Res. Commun 2010;396(2):578-83. [DOI:10.1016/j.bbrc.2010.04.156] [PMID]
27. Curcio M, Cirillo G, Tucci P, Farfalla A, Bevacqua E, Vittorio O, et al. Dextran-curcumin nanoparticles as a methotrexate delivery vehicle: A step forward in breast cancer combination therapy. Pharmaceuticals 2019;13(1):2. [DOI:10.3390/ph13010002] [PMID] []
28. Nosrati H, Salehiabar M, Davaran S, Danafar H, Manjili HK. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev. Ind. Pharm 2018;44(6):886-94. [DOI:10.1080/03639045.2017.1417422] [PMID]
29. Calaf GM, Ponce-Cusi R, Carrión F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol. Rep 2018;40(4):2381-8. [DOI:10.3892/or.2018.6603]
30. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med 2018;379(22):2108-21. [DOI:10.1056/NEJMoa1809615] [PMID]
31. Liu J, Meng T, Yuan M, Wen L, Cheng B, Liu N, et al. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int. J. Nanomed 2016:6713-25. [DOI:10.2147/IJN.S111647] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb