Volume 35, Issue 3 (June 2024)                   Studies in Medical Sciences 2024, 35(3): 218-231 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi V, Hosseini A. THE ROLE AND FUNCTION OF REGULATORY T CELLS (TREGS) IN PREGNANCY AND PREECLAMPSIA: A NARRATIVE REVIEW. Studies in Medical Sciences 2024; 35 (3) :218-231
URL: http://umj.umsu.ac.ir/article-1-6242-en.html
Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran (Corresponding Author) , hosseiniare@yahoo.com
Abstract:   (750 Views)
Background & Aims: Preeclampsia (PE) is a pregnancy-specific syndrome recognized as a major risk factor for preterm delivery. Preeclampsia (PE) is characterized by high blood pressure, significant proteinuria, and an excessive maternal systemic inflammatory response. The aim of this study was to investigate the role and function of regulatory T cells (Tregs) in pregnancy and preeclampsia.
Materials & Methods: This study is a narrative review that utilized the PubMed-Medline and Embase databases to search for the role of regulatory T cells (Tregs) in pregnancy and preeclampsia. Data were obtained from searching and extracting relevant articles.
Results: The results of various studies indicated that paternal antigens and female sex hormones are responsible for the increased number of Tregs during pregnancy. The expansion of Tregs and the regulation of the immune system are essential for maternal tolerance towards the fetus. Indeed, the number and function of Tregs play a crucial role in pregnancy; a reduction in the number and function of these cells is observed in unsuccessful pregnancies such as those complicated by preeclampsia.
Conclusion: Regulatory T cells play vital roles in maintaining immune tolerance towards the fetus during pregnancy. A decrease in the number or function of these cells can lead to pregnancy complications, including preeclampsia. Health professionals should be aware of the importance of immune balance during pregnancy and consider immune system-related factors when assessing the risk of preeclampsia. Additionally, a better understanding of the role of Tregs could contribute to the development of new diagnostic and therapeutic methods for preeclampsia.
 
Full-Text [PDF 551 kb]   (229 Downloads)    
Type of Study: Review article | Subject: ایمونولوژی

References
1. Dons EM, Raimondi G, Cooper DKC, Thomson AW. Induced regulatory T cells: mechanisms of conversion and suppressive potential. Human Immunol. 2012;73(4):328-34. [DOI:10.1016/j.humimm.2011.12.011] [PMID] []
2. Araujo-Pires AC, Francisconi CF, Biguetti CC, Cavalla F, Aranha AMF, Letra A, et al. Simultaneous analysis of T helper subsets (Th1, Th2, Th9, Th17, Th22, Tfh, Tr1 and Tregs) markers expression in periapical lesions reveals multiple cytokine clusters accountable for lesions activity and inactivity status. J Appl Oral Sci 2014;22:336-46. [DOI:10.1590/1678-775720140140] [PMID] []
3. Hosseini A, Teimuri S, Ehsani M, Rasa SMM, Etemadifar M, Nasr Esfahani MH, et al. Epigenetic mechanisms shape the underlining expression regulatory mechanisms of the STAT3 in multiple sclerosis disease. BMC Res Notes 2020;13:1-6. [DOI:10.1186/s13104-020-05427-1] [PMID] []
4. Hashemi V, Dolati S, Hosseini A, Gharibi T, Danaii S, Yousefi M. Polymorphism of Foxp3 gene affects the frequency of regulatory T cells and disease activity in patients with rheumatoid arthritis in Iranian population. Immunol Lett 2018;204:16-22. [DOI:10.1016/j.imlet.2018.10.001] [PMID]
5. Bennett CL, Brunkow ME, Ramsdell F, O'Briant KC, Zhu Q, Fuleihan RL, et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→ AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001;53:435-9. [DOI:10.1007/s002510100358] [PMID]
6. Fu Y, Freymueller JT, Jensen T. Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophys Res Lett 2012;39(15). [DOI:10.1029/2012GL052453]
7. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490-500. [DOI:10.1038/nri2785] [PMID]
8. Manigold T, Racanelli V. T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: facts and controversies. Lancet Infect Dis 2007;7(12):804-13. [DOI:10.1016/S1473-3099(07)70289-X] [PMID]
9. Lan RY, Ansari AA, Lian ZX, Gershwin ME. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev 2005;4(6):351-63. [DOI:10.1016/j.autrev.2005.01.007] [PMID]
10. Piccirillo CA, Thornton AM. Cornerstone of peripheral tolerance: naturally occurring CD4+ CD25+ regulatory T cells. Trends Immunol 2004;25(7):374-80. [DOI:10.1016/j.it.2004.04.009] [PMID]
11. Mahne AE, Mauze S, Joyce-Shaikh B, Xia J, Bowman EP, Beebe AM, et al. Dual roles for regulatory T-cell depletion and costimulatory signaling in agonistic GITR targeting for tumor immunotherapy. Cancer Res 2017;77(5):1108-18. [DOI:10.1158/0008-5472.CAN-16-0797] [PMID]
12. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 2006;24:99-146. [DOI:10.1146/annurev.immunol.24.021605.090737] [PMID]
13. Katz JB, Muller AJ, Prendergast GC. Indoleamine 2, 3‐dioxygenase in T‐cell tolerance and tumoral immune escape. Immunol Rev 2008;222(1):206-21. [DOI:10.1111/j.1600-065X.2008.00610.x] [PMID]
14. Sarris M, Andersen KG, Randow F, Mayr L, Betz AG. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 2008;28(3):402-13. [DOI:10.1016/j.immuni.2008.01.012] [PMID] []
15. Clemente T, Vieira NJ, Cerliani JP, Adrain C, Luthi A, Dominguez MR, et al. Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery. Cell Death Dis 2017;8(12):e3176. [DOI:10.1038/cddis.2017.506] [PMID] []
16. Da M, Ma C, Shi J, Yang N, Liu X, Zhang W. The multifaceted actions of CD73 during development and suppressive actions of regulatory T cells. Front Immunol 2022;13:914799. [DOI:10.3389/fimmu.2022.914799] [PMID] []
17. Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H, et al. CD4+ CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness. J Exp Med 2002;196(2):237-46. [DOI:10.1084/jem.20020590] [PMID] []
18. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3− effector T cells. Nat Immunol 2008;9(12):1347-55. [DOI:10.1038/ni.1677] [PMID] []
19. Carrier Y, Yuan J, Kuchroo VK, Weiner HL. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-β T cell-transgenic mice. J Immunol 2007;178(1):179-85. [DOI:10.4049/jimmunol.178.1.179] [PMID]
20. Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DAA. The development and function of regulatory T cells. Cell Mol Life Sci 2009;66:2603-22. [DOI:10.1007/s00018-009-0026-2] [PMID] []
21. Hadaschik EN, Enk AH. TGF-β1-induced regulatory T cells. Hum Immunol 2015;76(8):561-4. [DOI:10.1016/j.humimm.2015.06.015] [PMID]
22. Mohr A, Atif M, Balderas R, Gorochov G, Miyara M. Human FOXP3+ T regulatory cell heterogeneity. Clin Transl Immunol 2018;7(1):e1005. [DOI:10.1002/cti2.1005] [PMID] []
23. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009;30(6):899-911. [DOI:10.1016/j.immuni.2009.03.019] [PMID]
24. Munoz‐Suano A, Hamilton AB, Betz AG. Gimme shelter: the immune system during pregnancy. Immunol Rev 2011;241(1):20-38. [DOI:10.1111/j.1600-065X.2011.01002.x] [PMID]
25. Aluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 2004;5(3):266-71. [DOI:10.1038/ni1037] [PMID]
26. Zhao J-x, Zeng Y-y, Liu Y. Fetal alloantigen is responsible for the expansion of the CD4+ CD25+ regulatory T cell pool during pregnancy. J Reprod Immunol 2007;75(2):71-81. [DOI:10.1016/j.jri.2007.06.052] [PMID]
27. Saito S, Shima T, Nakashima A, Shiozaki A, Ito M, Sasaki Y. Role of paternal antigen‐specific Treg cells in successful implantation. Am J Reprod Immunol 2016;75(3):310-6. [DOI:10.1111/aji.12469] [PMID]
28. Toldi G, Svec P, Vásárhelyi B, Mészáros G, Rigó J, Tulassay T, et al. Decreased number of FoxP3+ regulatory T cells in preeclampsia. Acta Obstet Gynecol Scand 2008;87(11):1229-33. [DOI:10.1080/00016340802389470] [PMID]
29. Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+ CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol 2007;178(4):2572-8. [DOI:10.4049/jimmunol.178.4.2572] [PMID]
30. Figueiredo AS, Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 2016;148(1):13-21. [DOI:10.1111/imm.12595] [PMID] []
31. Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 2009;15(5):517-35. [DOI:10.1093/humupd/dmp004] [PMID] []
32. Zenclussen AC, Gerlof K, Zenclussen ML, Sollwedel A, Bertoja AZ, Ritter T, et al. Abnormal T-cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancy-induced CD4+ CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol 2005;166(3):811-22. [DOI:10.1016/S0002-9440(10)62302-4] [PMID]
33. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T‐cell paradigm in pregnancy. Am J Reprod Immunol 2010;63(6):601-10. [DOI:10.1111/j.1600-0897.2010.00852.x] [PMID]
34. Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol Reprod 2011;85(2):397-408. [DOI:10.1095/biolreprod.110.088591] [PMID]
35. Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlström AC, Care AS. Seminal fluid and the generation of regulatory T cells for embryo implantation. Am J Reprod Immunol 2013;69(4):315-30. [DOI:10.1111/aji.12107] [PMID]
36. Fainboim L, Arruvito L. Mechanisms involved in the expansion of Tregs during pregnancy: role of IL-2/STAT5 signalling. J Reprod Immunol 2011;88(2):93-8. [DOI:10.1016/j.jri.2010.12.007] [PMID]
37. Kallikourdis M, Andersen KG, Welch KA, Betz AG. Alloantigen-enhanced accumulation of CCR5+ 'effector'regulatory T cells in the gravid uterus. Proc Natl Acad Sci U S A 2007;104(2):594-9. [DOI:10.1073/pnas.0604268104] [PMID] []
38. Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune cells at the fetomaternal interface: how the microenvironment modulates immune cells to foster fetal development. J Immunol 2018;201(2):325-34. [DOI:10.4049/jimmunol.1800058] [PMID]
39. Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S, Dolaptchieva M, et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J Immunol 2009;182(9):5488-97. [DOI:10.4049/jimmunol.0803177] [PMID]
40. Zenclussen AC, Gerlof K, Zenclussen ML, Ritschel S, Zambon Bertoja A, Fest S, et al. Regulatory T cells induce a privileged tolerant microenvironment at the fetal‐maternal interface. Eur J Immunol 2006;36(1):82-94. [DOI:10.1002/eji.200535428] [PMID]
41. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+ CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 2005;174(4):1783-6. [DOI:10.4049/jimmunol.174.4.1783] [PMID]
42. Hosseini A, Hashemi V, Shomali N, Asghari F, Gharibi T, Akbari M, et al. Innate and adaptive immune responses against coronavirus. Biomed Pharmacother 2020;132:110859. [DOI:10.1016/j.biopha.2020.110859] [PMID] []
43. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007;8(12):1353-62. [DOI:10.1038/ni1536] [PMID]
44. Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH, et al. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 2009;183(4):2475-83. [DOI:10.4049/jimmunol.0900986] [PMID] []
45. Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, et al. Human CD14+ CTLA‐4+ regulatory dendritic cells suppress T‐cell response by cytotoxic T‐lymphocyte antigen‐4‐dependent IL‐10 and indoleamine‐2, 3‐dioxygenase production in hepatocellular carcinoma. Hepatology 2014;59(2):567-79. [DOI:10.1002/hep.26694] [PMID]
46. Cedeno-Laurent F, Dimitroff CJ. Galectin-1 research in T cell immunity: past, present and future. Clin Immunol 2012;142(2):107-16. 2011.09.011 [DOI:10.1016/j.clim.] [PMID] []
47. Leber A, Teles A, Zenclussen AC. Regulatory T cells and their role in pregnancy. Am J Reprod Immunol 2010;63(6):445-59. [DOI:10.1111/j.1600-0897.2010.00821.x] [PMID]
48. Du M-R, Guo P-F, Piao H-L, Wang S-C, Sun C, Jin L-P, et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal-fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol 2014;192(4):1502-11. [DOI:10.4049/jimmunol.1203425] [PMID] []
49. Dekker G, Robillard P-Y. Pre-eclampsia: is the immune maladaptation hypothesis still standing?: an epidemiological update. J Reprod Immunol 2007;76(1-2):8-16. [DOI:10.1016/j.jri.2007.03.015] [PMID]
50. Yang X, Qian J, Han J, Jiang S, Huang Z, Zhao H. The update immune-regulatory role of pro-and anti-inflammatory cytokines in recurrent pregnancy losses. Int J Mol Sci 2022;24(1):132. [DOI:10.3390/ijms24010132] [PMID] []
51. Miko E, Szereday L, Barakonyi A, Jarkovich A, Varga P, Szekeres-Bartho J. Immunoactivation in preeclampsia: Vδ2+ and regulatory T cells during the inflammatory stage of disease. J Reprod Immunol 2009;80(1-2):100-8. [DOI:10.1016/j.jri.2009.01.003] [PMID]
52. Sasaki A, Tanaka F, Mimori K, Inoue H, Kai S, Shibata K, et al. Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur J Surg Oncol 2008;34(2):173-9. [DOI:10.1016/j.ejso.2007.08.008] [PMID]
53. Santner-Nanan B, Peek MJ, Khanam R, Richarts L, Zhu E, Fazekas de St Groth B, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol 2009;183(11):7023-30. [DOI:10.4049/jimmunol.0901154] [PMID]
54. Boij R, Svensson J, Nilsson-Ekdahl K, Sandholm K, Lindahl TL, Palonek E, et al. Regulatory T‐cell subpopulations in severe or early‐onset preeclampsia. Am J Reprod Immunol 2015;74(4):368-78. [DOI:10.1111/aji.12410] [PMID]
55. Saito S, Shiozaki A, Sasaki Y, Nakashima A, Shima T, Ito M. What is the role of regulatory T cells in the success of implantation and early pregnancy? J Assist Reprod Genet 2007;24:379-86. [DOI:10.1007/s10815-007-9140-y] [PMID] []
56. Zhu G, Liu Y, Zhang W, Huang Y, Li K. CD27+ TIM-1+ memory B cells promoted the development of Foxp3+ Tregs and were associated with better survival in acute respiratory distress syndrome. Immunol Res 2018;66:281-7. [DOI:10.1007/s12026-017-8983-2] [PMID]
57. Dong S, Lyu Z, Xu Y, Zhang L, Yan X, Zhang Y. The abnormal expression of Tim-3 is involved in the regulation of myeloid-derived suppressor cells and its correlation with preeclampsia. Placenta 2021;114:108-114. [DOI:10.1016/j.placenta.2021.08.060] [PMID]
58. Ernerudh J, Berg G, Mjösberg J. Regulatory T helper cells in pregnancy and their roles in systemic versus local immune tolerance. Am J Reprod Immunol 2011;66:31-43. [DOI:10.1111/j.1600-0897.2011.01049.x] [PMID]
59. Yang D, Dai F, Yuan M, Zheng Y, Liu S, Deng Z, et al. Role of Transforming Growth Factor-β1 in Regulating Fetal-Maternal Immune Tolerance in Normal and Pathological Pregnancy. Front Immunol [Internet]. 2021 Aug 31 [cited 2024 Jul 26];12. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.689181/full [DOI:10.3389/fimmu.2021.689181] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb