Volume 36, Issue 1 (4-2025)                   Studies in Medical Sciences 2025, 36(1): 63-77 | Back to browse issues page

Research code: 11535
Ethics code: IR.UMSU.REC.1401.210


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hamze-Khalifani B, Vardast M R. Development of a Solid Phase Microextraction Method WITH Carbon Fiber for Extraction and Preconcentration of 1,4-Dioxane FROM Cosmetic SAMPLES. Studies in Medical Sciences 2025; 36 (1) :63-77
URL: http://umj.umsu.ac.ir/article-1-6421-en.html
Assistant Professor of Medicinal Chemistry, School of pharmacy, Urmia University of Medical Science, Urmia, Iran (Corresponding Author) , mrvardast@gmail.com
Abstract:   (386 Views)
Background & Aims: 1,4-Dioxane, a cyclic ether commonly employed in chemical and syntheses processes as a solvent, is now a probable human carcinogen. It is frequently found as a byproduct of detergents and personal care products, so reliable analytical methods to locate and quantify it in cosmetics are important for compliance, regulatory, and public health reasons.
Materials & Methods: We developed an optimized headspace solid-phase microextraction (HS-SPME) method that has the modified carbon fiber as the extraction phase when coupled with GC-FID. The analytical method also allows us to take the best of liquid-liquid extraction and HS-SPME together for better sensitivity in cosmetic matrices.
Results: The method provided adequate sensitivity, detection limit (LOD) of 0.4 μg/kg and quantitation limit (LOQ) of 1.2 μg/kg. The linear dynamic range was 1.5-300 μg/kg, R² > 0.999, precision of 5.8% as RSD at 25 μg/kg, n=6. The carbon fiber modified with aniline/pyrrole/graphene oxide extraction phase had longer extraction times, but was more efficient than conventional fibers due to its π-π modified interactions as well as more areas of contact and surface hydrophobicity. Conclusion: This method for the headspace solid-phase microextration-gas chromatography-flame ionization detection (HS-SPME-GC-FID) provides a sensitive, reliable, and solvent free method for monitoring, locating, and quantifying 1,4-dioxane in cosmetics to comply with regulatory standards of monitoring carcinogens. The modified carbon fiber exhibits exceptional performance for trace-level extraction of this challenging analyte.
Full-Text [PDF 2386 kb]   (123 Downloads)    
Type of Study: Research | Subject: داروسازی

References
1. US Environmental Protection Agency. Technical fact sheet - 1,4-dioxane. Washington, DC: US EPA; 2017. [URL]
2. International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Volume 110: 1,4-dioxane. Lyon: IARC; 2014. [URL]
3. Negahban AR, Shahna FG, Rahimpoor R, Jalali M, Rahiminejad S, Soltanian A, et al. Evaluating occupational exposure to carcinogenic volatile organic compounds in an oil-dependent chemical industry: a case study on benzene and epichlorohydrin. J Occup Hyg Eng 2014;1(1):36-42. [GOOGLE SCHOLAR]
4. Zenker MJ, Borden RC, Barlaz MA. Occurrence and treatment of 1,4-dioxane in aqueous environments. Environ Toxicol Chem 2003;22(11):2765-75. [DOI:10.1089/109287503768335913]
5. Kawata K, Ibaraki T, Tanabe A, Yagoh H, Shinoda A, Suzuki H. Gas chromatographic determination of 1,4-dioxane in water at sub-ppb levels. J Chromatogr A 2001;911(1):75-83. [DOI:10.1016/S0021-9673(00)01252-8] [PMID]
6. Gaca J, Wejnerowska G. Determination of epichlorohydrin in water and sewage samples. Talanta 2006;70(5):1044-50. [DOI:10.1016/j.talanta.2006.02.017] [PMID]
7. Loda C, Bernabe E, Nicoletti A, Bacchi S, Dams R. Determination of epichlorohydrin in active pharmaceutical ingredients by gas chromatography-mass spectrometry. Org Process Res Dev 2011;15(6):1388-91. [DOI:10.1021/op200203t]
8. Yan N, Wan X-F, Chai X-S, Chen R-Q. Determination of chlorinated volatile organic compounds in polyamine epichlorohydrin solution by headspace gas chromatography. J Chromatogr A 2017;1496:163-6. [DOI:10.1016/j.chroma.2017.03.046] [PMID]
9. Psillakis E, Kalogerakis N. Developments in liquid-phase microextraction. Trends Anal Chem 2003;22(9):565-74. [DOI:10.1016/S0165-9936(03)01007-0]
10. Kataoka H, Lord HL, Pawliszyn J. Applications of solid-phase microextraction in food analysis. J Chromatogr A 2000;880(1-2):35-62. [DOI:10.1016/S0021-9673(00)00309-5] [PMID]
11. Lord H, Pawliszyn J. Evolution of solid-phase microextraction technology. J Chromatogr A 2000;885(1-2):153-93. [DOI:10.1016/S0021-9673(00)00535-5] [PMID]
12. Ouyang G, Pawliszyn J. Recent developments in SPME for on-site analysis and monitoring. Anal Bioanal Chem 2006;386(4):1059-73. [DOI:10.1007/s00216-006-0460-z] [PMID]
13. Sarafraz-Yazdi A, Amiri A. Liquid-phase microextraction. Trends Anal Chem 2010;29(1):1-14. [DOI:10.1016/j.trac.2009.10.003]
14. Wu J, Pawliszyn J. Solid-phase microextraction coupled to capillary electrophoresis. Anal Chem 2001;73(1):55-63. [DOI:10.1021/ac000885x] [PMID]
15. Chen J, Sheng K, Luo P, Li C, Shi G. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Carbon 2016;99:79-89. [GOOGLE SCHOLAR]
16. Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Mater Today 2011;14(7-8):308-15. [GOOGLE SCHOLAR]
17. Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente RM, Otárola-Jiménez J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal Chim Acta 2015;892:10-26. [DOI:10.1016/j.aca.2015.07.046] [PMID]
18. Arthur CL, Pawliszyn J. Solid-phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 1990;62(19):2145-8. [DOI:10.1021/ac00218a019]
19. Lord HL, Grant RP, Walles M, Incledon B, Fahie B, Pawliszyn J. Development and evaluation of a solid-phase microextraction probe for in vivo pharmacokinetic studies. J Chromatogr A 2003;985(1-2):153-9. [GOOGLE SCHOLAR]
20. Bagheri H, Piri-Moghadam H, Naderi M. Towards greater mechanical, thermal and chemical stability in solid-phase microextraction. Trends Anal Chem 2012;43:34-9. [DOI:10.1016/j.trac.2011.11.004]
21. Shirey RE, Linton CM. The extraction and analysis of 1,4-dioxane from water using solid-phase microextraction coupled with gas chromatography and gas chromatography-mass spectrometry. J Chromatogr Sci 2006;44(7):444-50. [DOI:10.1093/chromsci/44.7.444] [PMID]
22. Grimmett PE, Munch JW. Method development for the analysis of 1,4-dioxane in drinking water using solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr Sci 2009;47(1):31-9. [DOI:10.1093/chromsci/47.1.31] [PMID]
23. Risticevic S, Lord H, Górecki T, Arthur CL, Pawliszyn J. Protocol for solid-phase microextraction method development. Nat Protoc 2010;5(1):122-39. [DOI:10.1038/nprot.2009.179] [PMID]
24. Souza Silva EA, Risticevic S, Pawliszyn J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. Trends Anal Chem 2013;43:24-36. [DOI:10.1016/j.trac.2012.10.006]
25. Vuckovic D, de Lannoy I, Gien B, Yang Y, Musteata FM, Shirey RE, et al. In vivo solid-phase microextraction: capturing the elusive portion of metabolome. Angew Chem Int Ed Engl 2011;50(23):5344-8. [DOI:10.1002/anie.201006715] [PMID]
26. Vardast MR, Ranjkeshzadeh N, Ghasemlu K, Ranjkeshzadeh H. Evaluation of acrylamide in some fried products marketed in Urmia city by high performance liquid chromatography with experimental method. Stud Med Sci 2019;30(3):207-16. [GOOGLE SCHOLAR]
27. Eskandari Azar M, Vardast MR. Measurement of oxytocin in human serum and pharmaceutical products available in the Iranian market by microextraction method. Stud Med Sci 2024;35(12):1035-44. [DOI:10.61186/umj.35.12.1035]
28. Vardast MR, Ranjkeshzadeh N. New method for determination of amiodarone in serum with dispersive liquid-liquid microextraction by high-performance liquid chromatography with experimental method. Stud Med Sci 2020;31(1):7-14. [GOOGLE SCHOLAR]
29. Zhou W. The determination of 1,4-dioxane in cosmetic products by gas chromatography with tandem mass spectrometry. J Chromatogr A 2019;1607:460400. [DOI:10.1016/j.chroma.2019.460400] [PMID]
30. Scalia S, Guarneri M, Menegatti E. Determination of 1,4-dioxane in cosmetic products by high-performance liquid chromatography. Analyst 1990;115(7):929-31. [DOI:10.1039/an9901500929] [PMID]
31. Black RE, Hurley FJ, Havery DC. Occurrence of 1,4-dioxane in cosmetic raw materials and finished cosmetic products. J AOAC Int 2001;84(3):666-70. [DOI:10.1093/jaoac/84.3.666] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb