Volume 35, Issue 7 (10-2024)                   Studies in Medical Sciences 2024, 35(7): 586-603 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghiasi M, Kheirandish Zarandi P, Dayani A. CIRCULAR RNAS: NEW AND EXCITING BIOMARKERS IN THE PROGNOSIS OF CARDIOVASCULAR DISEASES. Studies in Medical Sciences 2024; 35 (7) :586-603
URL: http://umj.umsu.ac.ir/article-1-6333-en.html
, amirmohse.ghiasi@gmail.com
Abstract:   (1157 Views)
In recent years, the field of biology has witnessed the discovery of new molecules with remarkable functions. One of these molecules is circular RNAs (CircRNAs), which are part of the large family of noncoding RNAs. These RNAs are abundantly present in body tissues and are located either in the cytoplasm or stored in exosomes, where they are not affected by cellular RNA exonucleases. Unlike other linear RNAs, circular RNAs lack free ends and therefore possess a more stable structure compared to linear transcripts. These unique characteristics make them ideal candidates for use as biomarkers. It is well established that these special RNAs play an important role in regulating gene expression. Furthermore, studies have demonstrated that circular RNAs play a crucial role in a wide range of biological processes, including cell proliferation, apoptosis, and aging. Importantly, circular RNAs are described as microRNA sponges. This mechanism, which has been extensively studied in cancers, holds promise as a biomarker in other diseases, particularly cardiovascular diseases. This study aims to evaluate the role of circular RNAs as biomarkers in the prognosis of cardiovascular diseases.
Full-Text [PDF 686 kb]   (559 Downloads)    
Type of Study: Review article | Subject: قلب و عروق

References
1. Roth GA, Dwyer-Lindgren L, Bertozzi-Villa A, Stubbs RW, Morozoff C, Naghavi M, et al. Trends and patterns of geographic variation in cardiovascular mortality among US counties, 1980-2014. Jama 2017;317(19):1976-92. [DOI:10.1001/jama.2017.4150] [PMID] []
2. Bandarian N, Rahbarghazi R, Mahdipour M, Ahmadi M, Rezabakhsh A, Haiaty S, et al. Inhibition of wnt3a diminished angiogenic differentiation capacity of rat cardiac progenitor cells. Studies in Medical Sciences 2022;32(10):773-81. [DOI:10.52547/umj.32.10.773]
3. Organization WH. Cardiovascular diseases (CVDs) https://www. who. int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Retrieved on January 2021;1:2024. [URL:]
4. Amin V, Bowes DA, Halden RU. Systematic scoping review evaluating the potential of wastewater-based epidemiology for monitoring cardiovascular disease and cancer. Sci Total Environ 2023;858:160103. [DOI:10.1016/j.scitotenv.2022.160103] [PMID] []
5. Friedenreich CM, Ryder‐Burbidge C, McNeil J. Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Mol Oncol 2021;15(3):790-800. [DOI:10.1002/1878-0261.12772] [PMID] []
6. Rezabakhsh A, Rahbarghazi R. Putative role of stem cells in the alleviation of ischemic heart disease; a review article. Studies in Medical Sciences 2021;32(9):691-706. [DOI:10.52547/umj.32.9.691]
7. Dayani A, Ghiasi M. New Methods in Cardiac Regenerative Medicine: The Use of Induced Pluripotent Stem Cells, Exosomes, and Cardiac Patch Technology. JMUMS 2024; 34(236):158-76. [google scholar]
8. Poirier P, Bertrand OF, Leipsic J, Mancini GJ, Raggi P, Roussin A, et al. Screening for the presence of cardiovascular disease. Can J Diabetes 2018;42:S170-S7. [DOI:10.1016/j.jcjd.2017.10.025] [PMID]
9. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;140(11):e596-e646. [DOI:10.1161/CIR.0000000000000725]
10. Tarride J-E, Lim M, DesMeules M, Luo W, Burke N, O'Reilly D, et al. A review of the cost of cardiovascular disease. CJC 2009; 25(6):e195-e202. [DOI:10.1016/S0828-282X(09)70098-4] [PMID]
11. Pennisi E. Shining a light on the genome's' dark matter'. AAAS;2010. [DOI:10.1126/science.330.6011.1614] [PMID]
12. Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer 2021; 21(1):22-36. [DOI:10.1038/s41568-020-00306-0] [PMID]
13. Kalsotra A, Wang K, Li P-F, Cooper TA. MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes Dev 2010;24(7):653-8. [DOI:10.1101/gad.1894310] [PMID] []
14. Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB, et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. PNAS 2008;105(51):20333-8. [DOI:10.1073/pnas.0809045105] [PMID] []
15. Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell 1976;8(4):547-55. [DOI:10.1016/0092-8674(76)90223-3] [PMID]
16. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013;495(7441):384-8. [DOI:10.1038/nature11993] [PMID]
17. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333-8. [DOI:10.1038/nature11928] [PMID]
18. Chen L-L, Yang L. Regulation of circRNA biogenesis. RNA Biol 2015;12(4):381-8. [DOI:10.1080/15476286.2015.1020271] [PMID] []
19. Li X, Yang L, Chen L-L. The biogenesis, functions, and challenges of circular RNAs. Mol Cell 2018;71(3):428-42. [DOI:10.1016/j.molcel.2018.06.034] [PMID]
20. Tang Y, Bao J, Hu J, Liu L, Xu DY. Circular RNA in cardiovascular disease: Expression, mechanisms and clinical prospects. J Cell Mol Med 2021;25(4):1817-24. [DOI:10.1111/jcmm.16203] [PMID] []
21. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet 2013;9(9):e1003777. [DOI:10.1371/journal.pgen.1003777] [PMID] []
22. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014;32(5):453-61. [DOI:10.1038/nbt.2890] [PMID] []
23. Zhang P, Guo N, Gao K, Su F, Wang F, Li Z. Direct recognition and sensitive detection of circular RNA with ligation-based PCR. Org Biomol Chem 2020;18(17):3269-73. [DOI:10.1039/D0OB00625D] [PMID]
24. Nguyen MH, Nguyen H-N, Vu TN. Evaluation of methods to detect circular RNAs from single-end RNA-sequencing data. BMC genomics 2022;23(1):106. https://doi.org/10.1186/s12864-022-08329-7 [DOI:10.1186/s12864-022-08329-7 https://doi.org/10.1186/1471-2164-12-106] [PMID] []
25. Jaijyan DK, Yang S, Ramasamy S, Gu A, Zeng M, Subbian S, et al. Imaging and quantification of human and viral circular RNAs? mode longmeta?. Nucleic Acids Res 2024;52(15):e70-e. [DOI:10.1093/nar/gkae583] [PMID] []
26. Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al. Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci Rep 2015;5(1):8057. [DOI:10.1038/srep08057] [PMID] []
27. Huang Y, Xue Q, Cheng C, Wang Y, Wang X, Chang J, et al. Circular RNA in autoimmune diseases: special emphasis on regulation mechanism in RA and SLE. JPP 2023;75(3):370-84. [DOI:10.1093/jpp/rgac096] [PMID]
28. Liao J, Zhang Q, Huang J, He H, Lei J, Shen Y, et al. The emerging role of circular RNAs in Parkinson's disease. Front Neurosci 2023;17:1137363. [DOI:10.3389/fnins.2023.1137363] [PMID] []
29. Hejazian SM, Rahbar Saadat Y, Hosseiniyan Khatibi SM, Farnood F, Farzamikia N, Hejazian SS, et al. Circular RNAs as novel biomarkers in glomerular diseases. Arch Physiol Biochem 2023:1-13. [DOI:10.1080/13813455.2023.2212328] [PMID]
30. Tong Y, Zhang S, Riddle S, Song R, Yue D. Circular RNAs in the Origin of Developmental Lung Disease: Promising Diagnostic and Therapeutic Biomarkers. Biomol 2023;13(3):533. [DOI:10.3390/biom13030533] [PMID] []
31. Jing T, Wu Y, Wan A, Ge C, Chen Z-J, Du Y. Circular RNA as a Novel Regulator and Promising Biomarker in Polycystic Ovary Syndrome. Biomolecules. 2023;13(7):1101. [DOI:10.3390/biom13071101] [PMID] []
32. Zhang Z-h, Wang Y, Zhang Y, Zheng S-F, Feng T, Tian X, et al. The function and mechanisms of action of circular RNAs in Urologic Cancer. Mol cancer 2023;22(1):61. [DOI:10.1186/s12943-023-01766-2] [PMID] []
33. He Z, Zhu Q. A Circular RNAs: Emerging roles and new insights in human cancers. Biomed pharmacother 2023;165:115217. [DOI:10.1016/j.biopha.2023.115217] [PMID]
34. Zhang Y, Luo J, Yang W, Ye W-C. CircRNAs in colorectal cancer: potential biomarkers and therapeutic targets. Cell Death Dis 2023;14(6):353. [DOI:10.1038/s41419-023-05881-2] [PMID] []
35. Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med 2017;95:1179-89. [DOI:10.1007/s00109-017-1582-9] [PMID] []
36. Lin F, Zhao G, Chen Z, Wang X, Lv F, Zhang Y, et al. circRNA‑miRNA association for coronary heart disease. Mol Med Rep 2019;19(4):2527-36. [DOI:10.3892/mmr.2019.9905]
37. Meng Z, Chen C, Cao H, Wang J, Shen E. Whole transcriptome sequencing reveals biologically significant RNA markers and related regulating biological pathways in cardiomyocyte hypertrophy induced by high glucose. J Cell Biochem 2019;120(1):1018-27. [DOI:10.1002/jcb.27546] [PMID]
38. Kristensen LS, Hansen TB, Venø MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 2018;37(5):555-65. [DOI:10.1038/onc.2017.361] [PMID] []
39. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. PNAS 1976;73(11):3852-6. [DOI:10.1073/pnas.73.11.3852] [PMID] []
40. Hsu M-T, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979; 280(5720):339-40. [DOI:10.1038/280339a0] [PMID]
41. Kos A, Dijkema R, Arnberg A, Van der Meide P, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature 1986;323(6088):558-60. [DOI:10.1038/323558a0] [PMID]
42. Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene 2023;42(38):2783-800. [DOI:10.1038/s41388-023-02780-w] [PMID] []
43. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014;56(1):55-66. [DOI:10.1016/j.molcel.2014.08.019] [PMID]
44. Fu X-D, Ares Jr M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 2014;15(10):689-701. [DOI:10.1038/nrg3778] [PMID] []
45. Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung L-H, et al. Exon circularization requires canonical splice signals. Cell Rep 2015;10(1):103-11. [DOI:10.1016/j.celrep.2014.12.002] [PMID]
46. Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front mol biosci 2017;4:38. [DOI:10.3389/fmolb.2017.00038] [PMID] []
47. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019;20(11):675-91. [DOI:10.1038/s41576-019-0158-7] [PMID]
48. Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, et al. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Front cell dev biol 2021;9:617281. [DOI:10.3389/fcell.2021.617281] [PMID] []
49. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015;22(3):256-64. [DOI:10.1038/nsmb.2959] [PMID]
50. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? cell. 2011;146(3):353-8. [DOI:10.1016/j.cell.2011.07.014] [PMID] []
51. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al. miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA. The EMBO J 2011;30(21):4414-22. [DOI:10.1038/emboj.2011.359] [PMID] []
52. Lim TB, Lavenniah A, Foo RS-Y. Circles in the heart and cardiovascular system. Cardiovasc Res 2020;116(2):269-78. [DOI:10.1093/cvr/cvz227] [PMID]
53. Ding C, Zhou YJJoC, Medicine M. Insights into circular RNAs: Biogenesis, function and their regulatory roles in cardiovascular disease. 2023;27(10):1299-314. [DOI:10.1111/jcmm.17734] [PMID] []
54. Su Q, Lv X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics 2020;112(2):1680-5. [DOI:10.1016/j.ygeno.2019.10.006] [PMID]
55. Li B, Li Y, Hu L, Liu Y, Zhou Q, Wang M, et al. Role of circular RNAs in the pathogenesis of cardiovascular disease. J Cardiovasc Transl Res 2020;13:572-83. [DOI:10.1007/s12265-019-09912-2] [PMID]
56. Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, et al. A landscape of circular RNA expression in the human heart. Cardiovasc Res 2017;113(3):298-309. [DOI:10.1093/cvr/cvw250] [PMID]
57. Jakobi T, Czaja-Hasse LF, Reinhardt R, Dieterich C. Profiling and validation of the circular RNA repertoire in adult murine hearts. GPB 2016;14(4):216-23. [DOI:10.1016/j.gpb.2016.02.003] [PMID] []
58. Werfel S, Nothjunge S, Schwarzmayr T, Strom T-M, Meitinger T, Engelhardt S. Characterization of circular RNAs in human, mouse and rat hearts. JMCC 2016;98:103-7. [DOI:10.1016/j.yjmcc.2016.07.007] [PMID]
59. Zou M, Huang C, Li X, He X, Chen Y, Liao W, et al. Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection. Oncotarget 2017;8(47):81825. [DOI:10.18632/oncotarget.18998] [PMID] []
60. Ju M, Kim D, Son G, Han J. Circular RNAs in and out of cells: therapeutic usages of circular RNAs. Mol and cells 2023;46(1):33-40. [DOI:10.14348/molcells.2023.2170] [PMID] []
61. Wen G, Gu W. Circular RNAs in peripheral blood mononuclear cells are more stable than linear RNAs upon sample processing delay. J Cell Mol Med 2022;26(19):5021-32. [DOI:10.1111/jcmm.17525] [PMID] []
62. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PloS one 2015;10(10):e0141214. [DOI:10.1371/journal.pone.0141214] [PMID] []
63. De Groot H, Rauen U, editors. Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc 2007: Elsevier. [DOI:10.1016/j.transproceed.2006.12.012] [PMID]
64. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rew Cel Mol Bio 2012;298:229-317. [DOI:10.1016/B978-0-12-394309-5.00006-7] [PMID] []
65. Geng H-H, Li R, Su Y-M, Xiao J, Pan M, Cai X-X, et al. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PloS one 2016;11(3):e0151753. [DOI:10.1371/journal.pone.0151753] [PMID] []
66. Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 2018;8(21):5855. [DOI:10.7150/thno.27285] [PMID] []
67. Dong K, He X, Su H, Fulton DJ, Zhou J. Genomic analysis of circular RNAs in heart. BMC Medical Genomics 2020;13:1-14. [DOI:10.1186/s12920-020-00817-7] [PMID] []
68. Gao X, Tian X, Huang Y, Fang R, Wang G, Li D, et al. Role of circular RNA in myocardial ischemia and ageing-related diseases. Cytokine Growth Factor 2022;65:1-11. [DOI:10.1016/j.cytogfr.2022.04.005] [PMID]
69. Wang K, Long B, Liu F, Wang J-X, Liu C-Y, Zhao B, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016;37(33):2602-11. [DOI:10.1093/eurheartj/ehv713] [PMID]
70. Wang K, Gan T-Y, Li N, Liu C-Y, Zhou L-Y, Gao J-N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 2017;24(6):1111-20. [DOI:10.1038/cdd.2017.61] [PMID] []
71. Timmis A, Vardas P, Townsend N, Torbica A, Katus H, De Smedt D, et al. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J 2022;43(8):716-99. [DOI:10.1093/eurheartj/ehab892] [PMID]
72. Dibben GO, Faulkner J, Oldridge N, Rees K, Thompson DR, Zwisler A-D, et al. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J 2023;44(6):452-69. [DOI:10.1093/eurheartj/ehac747] [PMID] []
73. KhademVatani K, Khadem-Ansari MH, Oloofi S, Shakibi A, Rostamzadeh A, Askari6 B, et al. Survey of correlation between serum ceruloplasmin level and coronary artery disease. Studies in Medical Sciences 2016;26(11):984-92. [google scholar]
74. Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, et al. Identification of circular RNA Hsa_circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis 2019;286:88-96. [DOI:10.1016/j.atherosclerosis.2019.05.006] [PMID]
75. Mao Y-y, Wang J-q, Guo X-x, Bi Y, Wang C-x. Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. BBRC 2018;505(1):119-25. [DOI:10.1016/j.bbrc.2018.09.069] [PMID]
76. Vilades D, Martínez-Camblor P, Ferrero-Gregori A, Bär C, Lu D, Xiao K, et al., editors. Plasma circular RNA hsa_circ_0001445 and coronary artery disease: Performance as a biomarker2020: FASEB. [DOI:10.1096/fj.201902507R] [PMID]
77. Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 2019;7(1):39918. [DOI:10.1038/srep39918] [PMID] []
78. Miao L, Yin R-X, Zhang Q-H, Liao P-J, Wang Y, Nie R-J, et al. A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease. Sci Rep 2019;9(1):18314. [DOI:10.1038/s41598-019-54603-2] [PMID] []
79. Liang B, Li M, Deng Q, Wang C, Rong J, He S, et al. CircRNA ZNF609 in peripheral blood leukocytes acts as a protective factor and a potential biomarker for coronary artery disease. Ann Transl Med 2020;8(12). [DOI:10.21037/atm-19-4728] [PMID] []
80. Brouwers S, Sudano I, Kokubo Y, Sulaica EM. Arterial hypertension. The Lancet 2021;398(10296):249-61. [DOI:10.1016/S0140-6736(21)00221-X] [PMID]
81. Jordan J, Kurschat C, Reuter H. Arterial hypertension: diagnosis and treatment. Dtsch Arztebl Int 2018;115(33-34):557. [DOI:10.3238/arztebl.2018.0557] [PMID] []
82. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. The Lancet 2008;371(9623):1513-8. [DOI:10.1016/S0140-6736(08)60655-8] [PMID]
83. Liu Y, Dong Y, Dong Z, Song J, Zhang Z, Liang L, et al. Expression profiles of circular RNA in aortic vascular tissues of spontaneously hypertensive rats. Frontiers in Cardiovascular Medicine. 2021;8:814402. [DOI:10.3389/fcvm.2021.814402] [PMID] []
84. Ma Y, Zheng B, Zhang X-H, Nie Z-Y, Yu J, Zhang H, et al. circACTA2 mediates Ang II-induced VSMC senescence by modulation of the interaction of ILF3 with CDK4 mRNA. Aging (Albany NY) 2021;13(8):11610. [DOI:10.18632/aging.202855] [PMID] []
85. Weiser-Evans MC. Smooth muscle differentiation control comes full circle: the circular noncoding RNA, circActa2, functions as a miRNA sponge to fine-tune α-SMA expression. Am Heart Assoc 2017. p. 591-3. [DOI:10.1161/CIRCRESAHA.117.311722] [PMID] []
86. Sun Y, Yang Z, Zheng B, Zhang X-h, Zhang M-l, Zhao X-s, et al. A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ Res 2017;121(6):628-35. [DOI:10.1161/CIRCRESAHA.117.311441] [PMID]
87. Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J, et al. A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. BBRC 2018;498(4):789-94. [DOI:10.1016/j.bbrc.2018.03.059] [PMID]
88. Liu L, Gu T, Bao X, Zheng S, Zhao J, Zhang L. Microarray profiling of circular RNA identifies hsa_circ_0126991 as a potential risk factor for essential hypertension. Cytogenet Genome Res 2019;157(4):203-12. [DOI:10.1159/000500063] [PMID]
89. Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 2017;39(5):454-9. [DOI:10.1080/10641963.2016.1273944] [PMID]
90. Zhang Y, Chen Y, Yao H, Lie Z, Chen G, Tan H, et al. Elevated serum circ_0068481 levels as a potential diagnostic and prognostic indicator in idiopathic pulmonary arterial hypertension. Pulm Circ 2019;9(4):2045894019888416. [DOI:10.1177/2045894019888416] [PMID] []
91. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail 2020;22(8):1342-56. [DOI:10.1002/ejhf.1858] [PMID] []
92. Devaux Y, Creemers EE, Boon RA, Werfel S, Thum T, Engelhardt S, et al. Circular RNAs in heart failure. Eur J Heart Fail 2017;19(6):701-9. [DOI:10.1002/ejhf.801] [PMID]
93. Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010;106(6):1035-9. [DOI:10.1161/CIRCRESAHA.110.218297] [PMID]
94. Seronde M-F, Vausort M, Gayat E, Goretti E, Ng LL, Squire IB, et al. Circulating microRNAs and outcome in patients with acute heart failure. PloS one 2015;10(11):e0142237. [DOI:10.1371/journal.pone.0142237] [PMID] []
95. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 2012;14(2):147-54. [DOI:10.1093/eurjhf/hfr155] [PMID]
96. Dickinson BA, Semus HM, Montgomery RL, Stack C, Latimer PA, Lewton SM, et al. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension‐induced heart failure. Eur J Heart Fail 2013;15(6):650-9. [DOI:10.1093/eurjhf/hft018] [PMID]
97. Zhou B, Yu J-W. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. BBRC 2017;487(4):769-75. [DOI:10.1016/j.bbrc.2017.04.044] [PMID]
98. Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L, et al. Upregulation of circular RNA CircNFIB attenuates cardiac fibrosis by sponging miR-433. Front genet 2019;10:564. [DOI:10.3389/fgene.2019.00564] [PMID] []
99. Tse G. Mechanisms of cardiac arrhythmias. J of arrhythmia 2016;32(2):75-81. [DOI:10.1016/j.joa.2015.11.003] [PMID] []
100. Harvey W. The anatomical lectures of William Harvey: Royal College of Physicians, London; 1964. [URL:]
101. Fu D-g. Cardiac arrhythmias: diagnosis, symptoms, and treatments. Cell Biochem Biophys 2015;73(2):291-6. [DOI:10.1007/s12013-015-0626-4] [PMID]
102. Li H, Xu J-D, Fang X-H, Zhu J-N, Yang J, Pan R, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 2020;116(7):1323-34. [DOI:10.1093/cvr/cvz215] [PMID] []
103. Zhang L, Zhang Y, Wang Y, Zhao Y, Ding H, Li P. Circular RNAs: functions and clinical significance in cardiovascular disease. Front cell dev biol 2020;8:584051. [DOI:10.3389/fcell.2020.584051] [PMID] []
104. Huang X, Zhao Y, Zhou H, Li Y. Circular RNAs in atherosclerosis. Clin Chim Acta 2022;531:71-80. [DOI:10.1016/j.cca.2022.03.016] [PMID]
105. Hou X, Dai H, Zheng Y. Circular RNA hsa_circ_0008896 accelerates atherosclerosis by promoting the proliferation, migration and invasion of vascular smooth muscle cells via hsa-miR-633/CDC20B (cell division cycle 20B) axis. J Bioeng 2022;13(3):5987-98. [DOI:10.1080/21655979.2022.2039467] [PMID] []
106. Abdul-Rahman T, Lizano-Jubert I, Bliss ZSB, Garg N, Meale E, Roy P, et al. RNA in cardiovascular disease: A new frontier of personalized medicine. Prog Cardiovasc Dis 2024; 85:93-102. [DOI:10.1016/j.pcad.2024.01.016] [PMID]
107. Zhao Y, Jaber VR, Lukiw WJ. Current advances in our understanding of circular RNA (circRNA) in Alzheimer's disease (AD); the potential utilization of synthetic circRNAs as a therapeutic strategy in the clinical management of AD. fddsv 2022;2:983030. [DOI:10.3389/fddsv.2022.983030]
108. Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023;8(1):341. [DOI:10.1038/s41392-023-01561-x] [PMID] []
109. Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. JCR 2022;348:84-94. [DOI:10.1016/j.jconrel.2022.05.043] [PMID] []
110. Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z, et al. Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 2019;7:e6831. [DOI:10.7717/peerj.6831] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb