Volume 35, Issue 7 (10-2024)                   Studies in Medical Sciences 2024, 35(7): 555-567 | Back to browse issues page

Research code: 12766
Ethics code: IR.UMSU.REC.1403.031


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hallaj T, Rahimi A. DEVELOPMENT OF A COLORIMETRIC SENSOR BASED ON SILVER NANOPRISMS FOR MERCAPTOPURINE DETECTION BY SMARTPHONE. Studies in Medical Sciences 2024; 35 (7) :555-567
URL: http://umj.umsu.ac.ir/article-1-6332-en.html
Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran , hallaj.t@umsu.ac.ir
Abstract:   (1596 Views)
Background & Aims: Mercaptopurine (MP) is an anti-cancer drug specifically applied for the treatment of childhood acute leukemia. However, like other chemotherapy drugs, it can cause notable adverse effects including hepatotoxicity, immunosuppression, and myelosuppression. Therefore, it is imperative to regularly monitor the dosage of this medication in the human body. Currently used methods are time-consuming and expensive. Hence, the creation of a sensitive and cost-effective approach for MP detection is of importance.
Materials & Methods: AgNPrs were synthesized from silver nitrate, trisodium citrate, poly(vinylpyrrolidone), hydrogen peroxide, and sodium borohydride. The formation of AgNPrs was confirmed by TEM imaging and absorbance spectrum recording. The agarose gel discs containing AgNPrs were prepared and exposed to different concentrations of MP. Then, the discs were placed into an I⁻ solution and RGB signals were taken via imaging by a smartphone.
Results: The prepared AgNPrs were characterized by UV–Vis absorption spectroscopy and TEM imaging. TEM images confirmed the triangular shape of AgNPrs. Additionally, three SPR characteristic peaks of AgNPrs appeared at 330, 485, and 735 nm. The corner sites of AgNPrs placed in agarose gel were dissociated by I⁻, leading to a color change of the AgNPr discs from blue to purple. In the presence of MP, AgNPrs were protected from etching by I⁻, resulting in the discs returning to a bluish color.
Conclusion: The color variations of the prepared AgNPr discs were proportional to the concentration of MP. Based on this fact, a colorimetric sensor was developed for the determination of MP. The sensor's linear concentration range was obtained from 1 to 20 µM with a LOD of 0.9 µM. The developed method was applied for the determination of MP in pharmaceutical compounds (6-MP tablets, 50 mg) with satisfactory results.

 
Full-Text [PDF 717 kb]   (381 Downloads)    
Type of Study: Research | Subject: داروسازی

References
1. Vanderah TW, Katzung BG. Vanderah TW, editor. New York, NY: McGraw-Hill; 2024. [google scholar]
2. Knezevic CE, Clarke W. Cancer Chemotherapy: The Case for Therapeutic Drug Monitoring. Ther Drug Monit 2020;42(1):6-19. [DOI:10.1097/FTD.0000000000000701] [PMID]
3. Sahasranaman S, Howard D, Roy S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 2008;64(8):753-67. [DOI:10.1007/s00228-008-0478-6] [PMID]
4. Al-Ghobashy MA, Hassan SA, Abdelaziz DH, Elhosseiny NM, Sabry NA, Attia AS, El-Sayed MH. Development and validation of LC-MS/MS assay for the simultaneous determination of methotrexate, 6-mercaptopurine and its active metabolite 6-thioguanine in plasma of children with acute lymphoblastic leukemia: Correlation with genetic polymorphism. J Chromatogr B Analyt Technol Biomed Life Sci 2016;1038:88-94. [DOI:10.1016/j.jchromb.2016.10.035] [PMID]
5. Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021;229:122247. [DOI:10.1016/j.talanta.2021.122247] [PMID]
6. Sun Z, Liu Y, Li Y. Selective recognition of 6-mercaptopurine based on luminescent metal-organic frameworks Fe-MIL-88NH₂. Spectrochim Acta A Mol Biomol Spectrosc 2015;139:296-301. [DOI:10.1016/j.saa.2014.12.009] [PMID]
7. Rawat K, Singhal R, Kailasa S. One-pot synthesis of silver nanoparticles using folic acid as a reagent for colorimetric and fluorimetric detections of 6-mercaptopurine at nanomolar concentration. Sens. Actuat. B: Chem 2017;249. [DOI:10.1016/j.snb.2017.04.018]
8. Zhang P, Wang L, Zeng J, Tan J, Long Y, Wang Y. Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms. Microchim. Acta 2020;187. [DOI:10.1007/s00604-019-4071-8] [PMID]
9. Yoon S-J, Nam Y-s, Lee H-J, Lee Y, Lee K-B. Colorimetric probe for Ni2+ based on shape transformation of triangular silver nanoprisms upon H2O2 etching. Sens. Actuat. B: Chem 2019;300:127045. [DOI:10.1016/j.snb.2019.127045]
10. Sabela M, Balme S, Bechelany M, Janot J, Bisetty K. A Review of Gold and Silver Nanoparticle-Based Colorimetric Sensing Assays. Adv. Eng. Mater. 2017;19:1700270. [DOI:10.1002/adem.201700270]
11. Zhang Z, Wang H, Chen Z, Wang X, Choo J, Chen L. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens. Bioelectron. 2018;114:52-65. [DOI:10.1016/j.bios.2018.05.015] [PMID]
12. Wang Y, Yang Y, Liu W, Ding F, Zhao Q, Zou P, et al. Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms. Microchim Acta 2018;185(6):281. [DOI:10.1007/s00604-018-2814-6] [PMID]
13. Chen Z, Zhang C, Wu Q, Li K, Tan L. Application of triangular silver nanoplates for colorimetric detection of H2O2. Sens. Actuat. B: Chem 2015;220:314-7. [DOI:10.1016/j.snb.2015.05.085]
14. Shirmardi S, Zare Mehrjardi H. Effect of cytotoxicity of silver nanoparticles synthesized with thymus vulgaris extract on molt-4 leukemia cell line. Stud Med Sci 2022;33(6):404-12. [DOI:10.52547/umj.33.6.404]
15. Nekouian R, Rasouli BS. Trial to use Anti-PSA conjugated gold nanoparticles for detection of PSA. Stud Med Sci 2017;28(2):112-8. [URL:]
16. Nateq Golestan M, Abbasi MR, Rakhshandeh H, Taghavizadeh Yazdi ME. Facile fabrication and characterization of silver nanoparticles by sunn pest (Eurygaster integriceps puton) damaged wheat and evaluation of its antibacterial and cellular toxicity toward liver cancer cell lines. Stud Med Sci 2023;34(10):586-97. [DOI:10.61186/umj.34.10.586]
17. Zuo P, Lu X, Sun Z-G, Guo Y, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 2016;183. [DOI:10.1007/s00604-015-1705-3]
18. Pessoa KD, Suarez WT, Dos Reis MF, de Oliveira Krambeck Franco M, Moreira RPL, Dos Santos VB. A digital image method of spot tests for determination of copper in sugar cane spirits. Spectrochim Acta A Mol Biomol Spectrosc 2017;185:310-6. [DOI:10.1016/j.saa.2017.05.072] [PMID]
19. Kumar A, Bera A, Kumar S. A Smartphone‐Assisted Sensitive, Selective and Reversible Recognition of Copper Ions in an Aqueous Medium. ChemistrySelect 2020;5:1020-8. [DOI:10.1002/slct.201904399]
20. Wongthanyakram J, Masawat P. Rapid Low-Cost Determination of Lead(II) in Cassava by an iPod-Based Digital Imaging Colorimeter. Anal. Lett. 2018;52:1-12. [DOI:10.1080/00032719.2018.1476526]
21. El Kaoutit H, Estévez P, García FC, Serna F, García JM. Sub-ppm quantification of Hg(ii) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone. Anal. Methods 2013;5(1):54-8. [DOI:10.1039/C2AY26307F]
22. Firdaus M, Aprian A, Meileza N, Hitsmi M, Elvia R, Rahmidar L, Khaydarov R. Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors 2019;7:25. [DOI:10.3390/chemosensors7020025]
23. Choodum A, Sriprom W, Wongniramaikul W. Portable and selective colorimetric film and digital image colorimetry for detection of iron. Spectrochim Acta A Mol Biomol Spectrosc 2019;208:40-7. [DOI:10.1016/j.saa.2018.09.062] [PMID]
24. Firdaus M, Alwi W, Trinoveldi F, Rahayu I, Rahmidar L, Warsito K. Determination of Chromium and Iron Using Digital Image-based Colorimetry. Procedia Environ. Sci. 2014;20:298-304. [DOI:10.1016/j.proenv.2014.03.037]
25. Sicard C, Glen C, Aubie B, Wallace D, Jahanshahi-Anbuhi S, Pennings K, et al. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015;70:360-9. [DOI:10.1016/j.watres.2014.12.005] [PMID]
26. Guo J, Wong JX, Cui C, Li X, Yu HZ. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Anlyst 2015;140(16):5518-25. [DOI:10.1039/C5AN00874C] [PMID]
27. Pohanka M, Zakova J, Sedlacek I. Digital camera-based lipase biosensor for the determination of paraoxon. Sens. Actuat. B: Chem 2018;273:610-5. [DOI:10.1016/j.snb.2018.06.084]
28. Wang Y, Zeinhom MMA, Yang M, Sun R, Wang S, Smith JN, et al. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of Detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid. Anal. Chem. 2017;89(17):9339-46. [DOI:10.1021/acs.analchem.7b02139] [PMID] []
29. Urapen R, Masawat P. Novel method for the determination of tetracycline antibiotics in bovine milk based on digital-image-based colorimetry. Int. Dairy J. 2015;44:1-5. [DOI:10.1016/j.idairyj.2014.12.002]
30. Ait Errayess S, Idrissi L, Amine A. Smartphone-based colorimetric determination of sulfadiazine and sulfasalazine in pharmaceutical and veterinary formulations. Instrum. Sci. Technol. 2018;46(6):656-75. [DOI:10.1080/10739149.2018.1443943]
31. Lin B, Yu Y, Cao Y, Guo M, Zhu D, Dai J, Zheng M. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens. Bioelectron. 2018;100:482-9. [DOI:10.1016/j.bios.2017.09.028] [PMID]
32. Devadhasan JP, Oh H, Choi CS, Kim S. Whole blood glucose analysis based on smartphone camera module. J. Biomed. Opt. 2015;20(11):117001-. [DOI:10.1117/1.JBO.20.11.117001] [PMID]
33. Mahato K, Chandra P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens. Bioelectron. 2019;128:9-16. [DOI:10.1016/j.bios.2018.12.006] [PMID]
34. Ravazzi CG, Krambeck Franco MdO, Vieira MCR, Suarez WT. Smartphone application for captopril determination in dosage forms and synthetic urine employing digital imaging. Talanta 2018;189:339-44. [DOI:10.1016/j.talanta.2018.07.015] [PMID]
35. Wu TH, Chang CC, Vaillant J, Bruyant A, Lin CW. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone. Lab Chip 2016;16(23):4527-33. [DOI:10.1039/C6LC01170E] [PMID]
36. Mathaweesansurn A, Maneerat N, Choengchan N. A mobile phone-based analyzer for quantitative determination of urinary albumin using self-calibration approach. Sens. Actuat. B: Chem 2017;242:476-83. [DOI:10.1016/j.snb.2016.11.057]
37. Krambeck M, Suarez W, Santos V. Digital Image Method Smartphone-Based for Furfural Determination in Sugarcane Spirits. Food Anal. Methods 2017;10. [DOI:10.1007/s12161-016-0605-4]
38. Porto ISA, Santos Neto JH, dos Santos LO, Gomes AA, Ferreira SLC. Determination of ascorbic acid in natural fruit juices using digital image colorimetry. Microchem. J. 2019;149:104031. [DOI:10.1016/j.microc.2019.104031]
39. Choi W, Shin J, Hyun K-A, Song J, Jung H-I. Highly sensitive and accurate estimation of bloodstain age using smartphone. Biosens. Bioelectron. 2019;130:414-9. [DOI:10.1016/j.bios.2018.09.017] [PMID]
40. Ogirala T, Eapen A, Salvante KG, Rapaport T, Nepomnaschy PA, Parameswaran AM. Smartphone-based colorimetric ELISA implementation for determination of women's reproductive steroid hormone profiles. Med Biol Eng Comput 2017;55(10):1735-41. [DOI:10.1007/s11517-016-1605-7] [PMID]
41. Böck F, Helfer G, Costa A, Dessuy M, Ferrao M. Rapid Determination of Ethanol in Sugarcane Spirit Using Partial Least Squares Regression Embedded in Smartphone. Food Anal. Methods 2018;11. [DOI:10.1007/s12161-018-1167-4]
42. Erenas MM, Carrillo-Aguilera B, Cantrell K, Gonzalez-Chocano S, Perez de Vargas-Sansalvador IM, de Orbe-Payá I, Capitan-Vallvey LF. Real time monitoring of glucose in whole blood by smartphone. Biosens. Bioelectron. 2019;136:47-52. [DOI:10.1016/j.bios.2019.04.024] [PMID]
43. Huang J, Sun J, Warden A, Ding X. Colorimetric and photographic detection of bacteria in drinking water by using 4-mercaptophenylboronic acid functionalized AuNPs. Food Control 2019;108:106885. [DOI:10.1016/j.foodcont.2019.106885]
44. Draz MS, Vasan A, Muthupandian A, Kanakasabapathy MK, Thirumalaraju P, Sreeram A, et al. Virus detection using nanoparticles and deep neural network-enabled smartphone system. Sci. Adv. 2020;6(51):eabd5354. [DOI:10.1126/sciadv.abd5354] [PMID] []
45. Fan Y, Li J, Guo Y, Xie L, Zhang G. Digital image colorimetry on smartphone for chemical analysis: A review. Meas. 2021;171:108829. [DOI:10.1016/j.measurement.2020.108829]
46. Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens Bioelectron 2021;172:112788. [DOI:10.1016/j.bios.2020.112788] [PMID]
47. McCracken KE, Yoon J-Y. Recent approaches for optical smartphone sensing in resource-limited settings: a brief review. Anal. Methods 2016;8(36):6591-601. [DOI:10.1039/C6AY01575A]
48. Gunatilake UB, Garcia-Rey S, Ojeda E, Basabe-Desmonts L, Benito-Lopez F. TiO2 Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Appl Mater Interfaces 2021;13(31):37734-45. [DOI:10.1021/acsami.1c11446] [PMID] []
49. Liu S, Yang Y, Shi M, Shi H, Mao D, Mao X, Zhang Y. Smartphone-Based Pure DNAzyme Hydrogel Platform for Visible and Portable Colorimetric Detection of Cell-Free DNA. ACS Sensors 2022;7(2):658-65. [DOI:10.1021/acssensors.1c02662] [PMID]
50. Peng J, Cao J, Wang L, Guo Z, Hou X. A portable hydrogel kit based on Au@GM88A/I combined with mobile phone for polychromatic semi-quantitative and quantitative sensing analysis. Biosens. Bioelectron. 2024;266:116682. [DOI:10.1016/j.bios.2024.116682] [PMID]
51. Amjadi M, Hallaj T, Salari Basmenj R. A highly sensitive plasmonic sensor for detection of selenium based on the shape transformation of silver nanoprisms. Sens. Actuat. B: Chem 2018;273. [DOI:10.1016/j.snb.2018.07.027]
52. Li Y, Li Z, Gao Y, Gong A, Zhang Y, Hosmane NS, et al. "Red-to-blue" colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nanoscale 2014;6(18):10631-7. [DOI:10.1039/C4NR03309D] [PMID]
53. An J, Tang B, Zheng X, Zhou J, Dong F, Xu S, et al. Sculpturing Effect of Chloride Ions in Shape Transformation from Triangular to Discal Silver Nanoplates. J. Phys. Chem. C 2008;112(39):15176-82. [DOI:10.1021/jp802694p]
54. Amjadi M, Hallaj T, Salari R. A sensitive colorimetric probe for detection of 6-thioguanine based on its protective effect on the silver nanoprisms. Spectrochim Acta A Mol Biomol Spectrosc 2019;210:30-5. [DOI:10.1016/j.saa.2018.11.002] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb