Volume 35, Issue 7 (10-2024)                   Studies in Medical Sciences 2024, 35(7): 568-578 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimi Kia I, sheikholeslami S, Ghaffarian Bahrmann A, Mohammadi M, Darabinejad M, Mohammadi H. INVESTIGATING THE PROTECTIVE EFFECT OF LUTEOLIN ON CHOLEMIC NEPHROPATHY IN CHOLESTATIC RATS. Studies in Medical Sciences 2024; 35 (7) :568-578
URL: http://umj.umsu.ac.ir/article-1-6297-en.html
Assistant Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran (Corresponding Author) , hamidrezamohammadi65@yahoo.com
Abstract:   (839 Views)
Background & Aims: Cholemic nephropathy is one of the important and serious complications associated with chronic liver damage and bile duct obstruction. Finding drug solutions to alleviate this complication or prevent its occurrence can be of clinical importance. Since luteolin is an antioxidant and one of the mechanisms of cholemic nephropathy is the induction of oxidative stress, this study was designed to investigate the protective effect of luteolin (LUT) on cholemic nephropathy in cholestatic rats.
Materials & Methods: In this experimental study, 50 male Wistar rats were used. Cholestasis was induced by common bile duct ligation (BDL). Rats were randomly divided into 5 groups of 10 as follows: a control group, a BDL group, and groups that received different doses of LUT (15, 5, and 30 mg/kg/day) daily by gavage for 14 days in addition to BDL. After the end of this intervention, the effect of cholestasis induction and the protective effects of LUT on serum, urine, and kidney tissue oxidative stress indices were examined.
Results: The present study showed that the levels of serum BUN and Cr, oxidative stress (MDA and ROS) indices in cholestatic rats were significantly increased compared to the control group (P < 0.001). Also, the activity of antioxidant enzymes (CAT, SOD, GPx) in cholestatic rats was significantly decreased compared to the control group (P < 0.001).
Conclusion: It seems that LUT can be a promising candidate for the prevention and treatment of renal damage caused by cholestasis by reducing oxidative stress and improving the activity of antioxidant enzymes.
 
 
Full-Text [PDF 661 kb]   (225 Downloads)    
Type of Study: Research | Subject: داروسازی

References
1. Ozougwu JC. Physiology of the liver. Int J Res Pharm Biosci 2017;4(8):13-24. [DOI:10.20546/ijcrbp.2017.411.004]
2. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci USA 2011;108(supplement_1):4523-30. [DOI:10.1073/pnas.1006734107] [PMID] []
3. Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 2004;40(3):539-51. [DOI:10.1016/j.jhep.2003.11.006] [PMID]
4. Krones E, Wagner M, Eller K, Rosenkranz AR, Trauner M, Fickert P. Bile acid-induced cholemic nephropathy. Dig Dis 2015;33(3):367-75. [DOI:10.1159/000371689] [PMID]
5. Fickert P, Rosenkranz AR, editors. Cholemic nephropathy reloaded. Semin Liver Dis; 2020: Thieme Medical Publishers. [DOI:10.1055/s-0039-1698826] [PMID]
6. Krones E, Pollheimer MJ, Rosenkranz AR, Fickert P. Cholemic nephropathy - Historical notes and novel perspectives. Biochim Biophys Acta Mol Basis Dis 2018;1864(4, Part B):1356-66. [DOI:10.1016/j.bbadis.2017.08.028] [PMID]
7. Abdoli N, Sadeghian I, Azarpira N, Ommati MM, Heidari R. Taurine mitigates bile duct obstruction-associated cholemic nephropathy: effect on oxidative stress and mitochondrial parameters. Clin Exp Hepatol 2021;7(1):30-40. [DOI:10.5114/ceh.2021.104675] [PMID] []
8. Ommati MM, Mohammadi H, Mousavi K, Azarpira N, Farshad O, Dehghani R, et al. Metformin alleviates cholestasis-associated nephropathy through regulating oxidative stress and mitochondrial function. Liver Res 2021;5(3):171-80. [DOI:10.1016/j.livres.2020.12.001]
9. Jashni Z, Ghaffari Nasab M, Salimi Kia I, Maleki A, Abdollahi S, Mohammadi H. Investigating the Protective Effects of Rutin on Cholemic Nephropathy in Cholestatic Rats. J Mazandaran Univ Med Sci 2024;34(238):72-80. [URL:]
10. Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT. Potential therapeutic effects of natural plant compounds in kidney disease. Molecules 2021;26(20):6096. [DOI:10.3390/molecules26206096] [PMID] []
11. Hajializadeh Z, Nasri S, Kaeidi A, Sheibani V, Rasoulian B, Esmaeili-Mahani S. Inhibitory effect of Thymus caramanicus Jalas on hyperglycemia-induced apoptosis in in vitro and in vivo models of diabetic neuropathic pain. J Ethnopharmacol 2014;153(3):596-603. [DOI:10.1016/j.jep.2014.02.049] [PMID]
12. Butterfield DA, Castegna A, Pocernich CB, Drake J, Scapagnini G, Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer's disease. J Nutr Biochem 2002;13(8):444-61. [DOI:10.1016/S0955-2863(02)00205-X] [PMID]
13. Haghani F, Arabnezhad M-R, Mohammadi S, Ghaffarian-Bahraman A. Aloe vera and streptozotocin-induced diabetes mellitus. Rev Bras Farmacogn 2022;32(2):174-87. [DOI:10.1007/s43450-022-00231-3] [PMID] []
14. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 2008;585(2-3):325-37. [DOI:10.1016/j.ejphar.2008.03.008] [PMID]
15. Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park JE, Shilnikova K, et al. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int J Oncol 2017;51(4):1169-78. [DOI:10.3892/ijo.2017.4091] [PMID]
16. Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother 2019;112:108612. [DOI:10.1016/j.biopha.2019.108612] [PMID]
17. Terzioglu D, Uslu L, Simsek G, Atukeren P, Erman H, Gelisgen R, et al. The effects of hyperbaric oxygen treatment on total antioxidant capacity and prolidase activity after bile duct ligation in rats. J Investig Surg 2017;30(6):376-82. [DOI:10.1080/08941939.2016.1257666] [PMID]
18. Doustimotlagh AH, Dehpour AR, Etemad-Moghadam S, Alaeddini M, Ostadhadi S, Golestani A. A study on OPG/RANK/RANKL axis in osteoporotic bile duct-ligated rats and the involvement of nitrergic and opioidergic systems. Res Pharm Sci 2018;13(3):239-49. [DOI:10.4103/1735-5362.228954] [PMID] []
19. Ahmadi SM, Farhoosh R, Sharif A, Rezaie M. Structure‐antioxidant activity relationships of luteolin and catechin. J Food Sci 2020;85(2):298-305. [DOI:10.1111/1750-3841.14994] [PMID]
20. Kaler B, Karram T, Morgan WA, Bach PH, Yousef IM, Bomzon A. Are bile acids involved in the renal dysfunction of obstructive jaundice? An experimental study in bile duct ligated rats. Ren Fail 2004;26(5):507-16. [DOI:10.1081/JDI-200031753] [PMID]
21. Lee J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KD, et al. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology 2001;121(6):1473-84. [DOI:10.1053/gast.2001.29608] [PMID]
22. Bomzon A, Holt S, Moore K, editors. Bile acids, oxidative stress, and renal function in biliary obstruction. Semin Nephrol; 1997. [PMID]
23. Omidi M, Ghafarian‐Bahraman A, Mohammadi‐Bardbori A. GSH/GSSG redox couple plays central role in aryl hydrocarbon receptor‐dependent modulation of cytochrome P450 1A1. J Biochem Mol Toxicol 2018;32(7):e22164. [DOI:10.1002/jbt.22164] [PMID]
24. Ghaffarian-Bahraman A, Shahroozian I, Jafari A, Ghazi-Khansari M. Protective effect of magnesium and selenium on cadmium toxicity in the isolated perfused rat liver system. Acta Med Iran 2014:872-8. [PMID]
25. Garcia-Caparros P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, et al. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev 2021;87:421-66. [DOI:10.1007/s12229-020-09231-1]
26. Zhang L, Han YJ, Zhang X, Wang X, Bao B, Qu W, et al. Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKα1 signalling in adipose tissue macrophages. Diabetologia 2016;59(10):2219-28. [DOI:10.1007/s00125-016-4039-8] [PMID]
27. Wang G, Li W, Lu X, Bao P, Zhao X. Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complications 2012;26(4):259-65. [DOI:10.1016/j.jdiacomp.2012.04.007] [PMID]
28. Qiao H, Dong L, Zhang X, Zhu C, Zhang X, Wang L, et al. Protective effect of luteolin in experimental ischemic stroke: upregulated SOD1, CAT, Bcl-2 and claudin-5, down-regulated MDA and Bax expression. Neurochem Res 2012;37:2014-24. [DOI:10.1007/s11064-012-0822-1] [PMID]
29. Cormier M, Ghouili F, Roumaud P, Bauer W, Touaibia M, Martin LJ. Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells. Cell Biol Toxicol 2018;34(1):23-38. [DOI:10.1007/s10565-017-9395-8] [PMID]
30. Chen H-I, Hu W-S, Hung M-Y, Ou H-C, Huang S-H, Hsu P-T, et al. Protective effects of luteolin against oxidative stress and mitochondrial dysfunction in endothelial cells. Nutr Metab Cardiovasc Dis 2020;30(6):1032-43. [DOI:10.1016/j.numecd.2020.02.014] [PMID]
31. Chen D, Shen F, Liu J, Tang H, Teng X, Yang F, et al. Luteolin enhanced antioxidant capability and induced pyroptosis through NF-κB/NLRP3/Caspase-1 in splenic lymphocytes exposure to ammonia. Sci Total Environ 2024;919:170699. [DOI:10.1016/j.scitotenv.2024.170699] [PMID]
32. Azeem M, Hanif M, Mahmood K, Ameer N, Chughtai FRS, Abid U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym Bull 2023;80(1):241-62. [DOI:10.1007/s00289-022-04091-8] [PMID] []
33. Chen L-Y, Cheng H-L, Liao C-K, Kuan Y-H, Liang T-J, Tseng T-J, et al. Luteolin improves nephropathy in hyperglycemic rats through anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms. J Funct Foods 2023;102:105461. [DOI:10.1016/j.jff.2023.105461]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb