Volume 35, Issue 5 (August 2024)                   Studies in Medical Sciences 2024, 35(5): 394-403 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourdadash Shahrak J, Alinezhad B, Masoudi N. INVESTIGATING THE EFFECT OF BETA-ALANINE ON CLINICAL OUTCOMES IN PATIENTS WITH ACUTE LIMB ISCHEMIA AFTER SURGERY. Studies in Medical Sciences 2024; 35 (5) :394-403
URL: http://umj.umsu.ac.ir/article-1-6288-en.html
Department of General Surgery, School of Medicine, Urmia University of Medical Sciences, Urmia,Iran. & Associate Professor and Colorectal Surgery Fellowship, Department of General Surgery, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran (Corresponding Author) , dr.nasmasoudi@gmail.com
Abstract:   (227 Views)
Background & Aim: Acute limb ischemia remains a significant cause of emergency vascular surgery. Given the severe complications associated with this condition and the need for more effective treatments, this study was conducted to evaluate the impact of beta-alanine on clinical outcomes in patients with acute upper or lower limb ischemia following surgery.
Materials & Methods: This single-blind clinical trial enrolled 40 patients with acute limb ischemia without gangrene or mottling and who required amputation. Patients were randomly assigned to a beta-alanine group (n=20) or a placebo group (n=20). The intervention group received 4 grams of oral beta-alanine before surgery and 4 hours postoperatively, while the placebo group received a matching placebo. Primary outcomes included limb loss frequency and extent, while secondary outcomes were mortality and laboratory findings.
Results: A total of 9 patients (22.5%) experienced limb loss. Of these, only 1 patient (5%) was in the beta-alanine group, compared to 8 patients (40%) in the placebo group (p=0.02). In the beta-alanine group, the affected limb was the right lower extremity. In the placebo group, one patient lost the right upper limb, two lost the right lower limb, four lost the left upper limb, and one lost the left lower limb. There was no significant difference in mortality between the groups (5% in the beta-alanine group versus 15% in the placebo group; p=0.61).
Conclusion: The frequency of limb loss was significantly lower in patients treated with 4 grams of oral beta-alanine compared to the placebo group. Therefore, beta-alanine may be considered an effective adjunctive therapy in reducing the risk of limb loss in patients with acute limb ischemia.

 
Full-Text [PDF 452 kb]   (95 Downloads)    
Type of Study: Research | Subject: جراحی عمومی

References
1. Bath J, Kim RJ, Dombrovskiy VY, Vogel TR. Contemporary trends and outcomes of thrombolytic therapy for acute lower extremity ischemia. Vascolar 2019;27(1):71-7. [PMID: 30193552] [DOI:10.1177/1708538118797782]
2. Baril DT, Ghosh K, Rosen AB. Trends in the incidence, treatment, and outcomes of acute lower extremity ischemia in the United States Medicare population. J Vasc Surg 2014;60(3):669-77. [PMID: 24768362] [DOI:10.1016/j.jvs.2014.03.244] [PMCID: PMC4492305]
3. Olinic DM, Stanek A, Tătaru DA, Homorodean C, Olinic M. Acute Limb Ischemia: An Update on Diagnosis and Management. J Clin Med 2019; 8(8):5-10. [URL:] [DOI:10.3390/jcm8081215]
4. Davis FM, Albright J, Gallagher KA, Gurm HS, Koenig GC, Schreiber T, et al. Early outcomes following endovascular, open surgical, and hybrid revascularization for lower extremity acute limb ischemia. Ann Vasc Surg 2018;51:106-12. [PMID: 29518503] [DOI:10.1016/j.avsg.2017.12.025]
5. Gandhi SS, Ewing JA, Cooper E, Chaves JM, Gray BH. Comparison of low-dose catheter-directed thrombolysis with and without pharmacomechanical thrombectomy for acute lower extremity ischemia. Ann Vasc Surg 2018;46:178-86. [PMID: 28739471] [DOI:10.1016/j.avsg.2017.07.008]
6. Inagaki E, Farber A, Kalish JA, Eslami MH, Siracuse JJ, Eberhardt RT, et al. Outcomes of peripheral vascular interventions in select patients with lower extremity acute limb ischemia. J Am Heart Assoc 2018;7(8):1-8. [PMID: 29650705] [DOI:10.1161/JAHA.116.004782]
7. Taha AG, Byrne RM, Avgerinos ED, Marone LK, Makaroun MS, Chaer RA. Comparative effectiveness of endovascular versus surgical revascularization for acute lower extremity ischemia. J Vasc Surg 2015;61(1):147-54. [PMID: 25080883] [DOI:10.1016/j.jvs.2014.06.109]
8. Lind B, Morcos O, Ferral H, Chen A, Aquisto T, Lee S, Lee CJ. Endovascular strategies in the management of acute limb ischemia. Vasc Spect Int 2019;35(1):4-12. [PMID: 30993101] [DOI:10.5758/vsi.2019.35.1.4]
9. Theodoridis PG, Davos CH, Dodos I, Iatrou N, Potouridis A, Pappas GM, et al. Thrombolysis in acute lower limb ischemia: review of the current literature. Ann Vasc Surg 2018;52:255-62. [PMID: 29772326] [DOI:10.1016/j.avsg.2018.02.030]
10. Plate G, Oredsson S, Lanke J. When is thrombolysis for acute lower limb ischemia worthwhile?. Eur J Vasc Endovasc Surg 2009;37(2):206-12. [PMID: 19054698] [DOI:10.1016/j.ejvs.2008.11.010]
11. Darwood R, Berridge DC, Kessel DO, Robertson I, Forster R. Surgery versus thrombolysis for initial management of acute limb ischaemia. Cochrane Database of Systematic Reviews 2018;8:1-10. [PMID: 30095170] [DOI:10.1002/14651858.CD002784.pub3] [PMCID: PMC6513660]
12. Hou X, Sun G, Guo L, Gong Z, Han Y, Bai X. Cardioprotective effect of taurine and β-alanine against cardiac disease in myocardial ischemia and reperfusion-induced rats. Electron J Biotechnol 2020;45:46-52. [URL:] [DOI:10.1016/j.ejbt.2020.04.003]
13. Sheikholeslami-Vatani D, Bolurian MR, Rahimi R. Acute effects of different doses of beta-alanine supplement on neuromuscular fatigue and lactate accumulation after intense interval exercise. Stud Med Sci 2016; 26(11):912-20. [URL:]
14. Boakye AA, Zhang D, Guo L, Zheng Y, Hoetker D, Zhao J, et al. Carnosine supplementation enhances post ischemic hind limb revascularization. Front Physiol 2019;10:751-60. [PMID: 31312142] [DOI:10.3389/fphys.2019.00751]
15. Ostfeld I, Hoffman JR. The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers. Nutr 2023; 15(4):8-15. [PMID: 36839397] [DOI:10.3390/nu15041039]
16. Dominowski L, Kirsch M. Synergistic Effect of β-alanine and Aprotinin on Mesenteric Ischemia. J Surg Res 2021;263:78-88. [PMID: 33639373] [DOI:10.1016/j.jss.2021.01.026]
17. Brencher L, Verhaegh R, Kirsch M. Attenuation of intestinal ischemia-reperfusion-injury by β-alanine: a potentially glycine-receptor mediated effect. J Surg Res 2017;211:233-41. [PMID: 28501123] [DOI:10.1016/j.jss.2016.12.023]
18. Whitehead AL, Julious SA, Cooper CL, Campbell MJ. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res 2016;25(3):1057-73. [PMID: 26092476] [DOI:10.1177/0962280215588241]
19. In J. Introduction of a pilot study. Korean J Anesthesiol 2017;70(6):601-5. [PMID: 29225742] [DOI:10.4097/kjae.2017.70.6.601]
20. Juneja A, Garuthara M, Talathi S, Rao A, Landis G, Etkin Y. Predictors of poor outcomes after lower extremity revascularization for acute limb ischemia. Vasc J 2023;4:1-6. [PMID: 36696536] [DOI:10.1177/17085381231154290]
21. Doan Quoc H, Duong Ngoc T, Nguyen Hung M. Fasciotomy in the treatment of acute lower extremity ischemia due to trauma, vascular wounds at Viet Duc University Hospital. Vasc J 2023 19;41:45-53 [URL:] [DOI:10.47972/vjcts.v41i.866]
22. Keskin A, Kanar BG, Kanar RG, Kepez A, Tunerir B. An investigation on the impact of carnosine on the myocardium in lower extremity ischemia-reperfusion injury in rats. Int J Cardiovasc Academy 2017; 3(4):109-13. [URL:] [DOI:10.1016/j.ijcac.2016.11.054]
23. Horvath DM, Murphy RM, Mollica JP, Hayes A, Goodman CA. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids 2016;48(11):2635-45. [PMID: 27444300] [DOI:10.1007/s00726-016-2292-2]
24. Keskin A, Kanar BG, Kanar RG, Kepez A, Tunerir B. An investigation on the impact of carnosine on the myocardium in lower extremity ischemia-reperfusion injury in rats. Int J Cardiovasc Academy 2017;3(3):109-13. [URL:] [DOI:10.1016/j.ijcac.2016.11.054]
25. Fujii T, Takaoka M, Muraoka T, Kurata H, Tsuruoka N, Ono H, et al. Preventive effect of L-carnosine on ischemia/reperfusion-induced acute renal failure in rats. Eur J Pharmacol 2003;474(3):261-7. [PMID: 12921872] [DOI:10.1016/S0014-2999(03)02079-X]
26. Boakye AA. Carnosine, a therapeutic potential for critical limb ischemic. Eur J Pharmacol 2016; 5:12-19. [URL:]
27. Baba SP, Hoetker JD, Merchant M, Klein JB, Cai J, Barski OA, et al. Role of aldose reductase in the metabolism and detoxification of carnosine-acrolein conjugates. J Biol Chem 2013;288(39):28163-79. [PMID: 23928303] [DOI:10.1074/jbc.M113.504753]
28. Feehan J, Hariharan R, Buckenham T, Handley C, Bhatnagar A, Baba SP, de Courten B. Carnosine as a potential therapeutic for the management of peripheral vascular disease. Nutr Metab Cardiovasc Dis 2022;32(10):2289-96. [PMID: 35973888] [DOI:10.1016/j.numecd.2022.07.006]
29. Boakye AA, Zhang D, Zhao J, Wempe MF, Conklin DJ, Baba SP. Carnosine supplementation enhances post ischemic hind limb revascularization. Front Physiol 2019;10:8-16. [PMID: 31312142] [DOI:10.3389/fphys.2019.00751]
30. Fathalla Z, Mustafa WW, Abdelkader H, Moharram H, Sabry AM, Alany RG. Hybrid thermosensitive-mucoadhesive in situ forming gels for enhanced corneal wound healing effect of L-carnosine. Drug Deliv 2022;29(1):374-85. [PMID: 35068268] [DOI:10.1080/10717544.2021.2023236]
31. Distefano A, Caruso G, Oliveri V, Bellia F, Sbardella D, Zingale GA, et al. Neuroprotective Effect of Carnosine Is Mediated by Insulin-Degrading Enzyme. ACS Chem Neurosci 2022;13(10):1588-93. [PMID: 35471926] [DOI:10.1021/acschemneuro.2c00201]
32. Creighton JV, de Souza Gonçalves L, Artioli GG, Tan D, Elliott-Sale KJ, Turner MD, et al. Physiological Roles of Carnosine in Myocardial Function and Health. Adv Nutr 2022;13(5):1914-29. [PMID: 35689661] [DOI:10.1093/advances/nmac059]
33. Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020;52(3):329-60. [PMID: 32072297] [DOI:10.1007/s00726-020-02823-6] [PMCID: PMC7088015]
34. Fernández-Lázaro D, Fiandor EM, García JF, Busto N, Santamaría-Peláez M, Gutiérrez-Abejón E, et al. β-Alanine Supplementation in Combat Sports: Evaluation of Sports Performance, Perception, and Anthropometric Parameters and Biochemical Markers-A Systematic Review of Clinical Trials. Nutr 2023; 15(17):1-9. [PMID: 37686787] [DOI:10.3390/nu15173755] [PMCID: PMC10490143]
35. Dolan E, Swinton PA, Painelli VS, Stephens Hemingway B, Mazzolani B, Infante Smaira F, et al. A Systematic Risk Assessment and Meta-Analysis on the Use of Oral β-Alanine Supplementation. Adv Nutr 2019;10(3):452-63. [PMID: 30980076] [DOI:10.1093/advances/nmy115] [PMCID: PMC6520041]
36. Rahmatollahi M, Pourrahim Ghouroghchi A. Improving cardiac inflammatory markers via akt gene expression, cardiac pi3k, and serum il-1β by combined exercise and taurine supplementation in diabetic male wistar rats. Stud Med Sci 2024;35(3):204-17. [URL:] [DOI:10.61186/umj.35.3.204]
37. Amniattalab A, Tamaddonfard E, Cheraghian S, Dorostghol A, Babadoust-Sani E, Mehr M, Najafi Z. Effect of intra peritoneal injection of histidine on cold allodynia, formalin pain test and pathology of crushed sciatic nerve in rat. Stud Med Sci 2015;26(6):531-41. [URL:]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb