Volume 35, Issue 6 (September 2024)                   Studies in Medical Sciences 2024, 35(6): 479-491 | Back to browse issues page

Research code: د/29726
Ethics code: IR.IAU.MSHD.REC.1402.101
Clinical trials code: این مطالعه کارآزمایی بالینی ندارد


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourmohammad M, Khayatzadeh J, Sattari Fard H, Tehranipour M, Rakhshandeh H, Zafar Balanejad S. THE EFFECT OF AQUEOUS EXTRACT OF CROCUS SATIVUS ON THE VEGF AND FGF GENE EXPRESSION IN THE PROCESS OF ANGIOGENESIS OF THE CHORIOALLANTOIC MEMBRANE OF CHICK EMBRYOS. Studies in Medical Sciences 2024; 35 (6) :479-491
URL: http://umj.umsu.ac.ir/article-1-6271-en.html
Assistant professor, Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran (Corresponding Author) , j.khayatzadeh@mshdiau.ac.ir
Abstract:   (284 Views)
Background & Aim: Angiogenesis is the biological process of sprouting new vessels from existing vessels in the tissue. The main factors in the molecular guidance of this process are vascular endothelial growth factors (VEGF) and fibroblast growth factor (FGF). Considering the importance of plant medicine sciences and also, the role of angiogenesis in processes such as wound healing, menstrual cycles, placental growth, and ovulation, the aim of this study was to investigate the effect of aqueous extract of Crocus sativus (as one of the prominent medicinal plants in traditional medicine) on changes in the gene expression of VEGF and FGF in the angiogenesis pathway of the chorioallantoic membrane (CAM) of chick embryos.
Materials & Methods: In this research, 40 Ross fertilized eggs were randomly divided into 4 groups including the control group, laboratory control (PBS), and 2 experimental groups. On the eighth day of incubation (temperature 38 degrees Celsius and humidity 55 to 60 percent), the laboratory control group was treated with normal saline, and the experimental groups were treated with doses of 50 and 100 µg/ml of the aqueous extract of Crocus sativus. On the twelfth day, a photo was taken of the chorioallantoic membrane, and a sample was taken for RNA extraction and cDNA production. The collected data were analyzed using Excel and SPSS 20 statistical software.
Results: The average number of vessels (6.25 ± 0.25) and vessel length (15.58 ± 1.11) in the treated group showed a significant decrease (P < 0.05) compared to the control group. Also, the expression level of VEGF (0.3235) and FGF (0.3875) genes in the treated group was significantly (P < 0.05) lower than the control group.
Conclusion: Aqueous extract of Crocus sativus can reduce the expression of VEGF and FGF genes and the angiogenic process of the chorioallantoic membrane of chicken embryos.

 
Full-Text [PDF 887 kb]   (113 Downloads)    
Type of Study: Research | Subject: فارماکولوژی

References
1. Ramezani T, Baharara J. A review on Angiogenesis in tumor. J Cell Tissue 2014; 5(1): 89-100. (Persian) [URL:]
2. Pourmohammad M, Khayatzadeh J, Azarizadeh M, Pouresmaeil V, Zafar Balanjad S. The Effect of the Hydroalcoholic Extract of Ferula Assa- Foetida Resin Root and Shoot on the VEGF and FGF Gene Expression in the Chorioallantoic Membrane of Chick Embryos. Pejouhesh dar Pezeshki 2024;48(1):50-62. (Persian) [URL:]
3. Vimalraj S, Renugaa S, Dhanasekaran A. Chick embryo chorioallantoic membrane: a biomaterial testing platform for tissue engineering applications. Process Biochem 2023 Jan 1; 124:81-91. [URL:] [DOI:10.1016/j.procbio.2022.11.007]
4. yadamani S, neamati A, homayouni tabrizi M, yadamani S. Evaluation of effect Schiff base complex Cu2+ N,Nˊ-dipyridoxyl(1,2 diaminobenzene) on angiogenesis process on chorioallantoic membrane and genes expression of VEGF and VEGF-R. Stud Med Sci 2018; 29 (9):642-650. [URL:]
5. Gulcu A, Akkaya O. Investigation of the antiangiogenic properties of zoledronic acid by using chorioallantoic membrane model. Dose-Response 2022 Apr 7;20(2):15593258221093410. [PMID: 35558869] [DOI:10.1177/15593258221093410] [PMCID: PMC9087255]
6. CHU, Pei-Yu, et al. Applications of the chick chorioallantoic membrane as an alternative model for cancer studies. Cells Tissues Organs 2022, 211.2: 222-237.‏ [PMID: 33780951] [DOI:10.1159/000513039] [PMCID: PMC9153341]
7. shali R, neamati A, Ardalan P. Quantitative assessment and morphometric investigation of anti-angiogenic properties of silver nanoparticles synthesized using Persicaria bistorta extracts on chick chorioallantoic membrane. Stud Med Sci 2018; 29 (3):208-216. [URL:]
8. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 2012; 51(6): 637-63. [PMID: 22684631] [DOI:10.1007/s00394-012-0380-y] [PMCID: PMC3419346]
9. Prabhakar P, Mukherjee S, Kumar A, Kumar S, Verma DK, Dhara S, et al. Optimization of microwave-assisted extraction (MAE) of key phenolic compounds from pigeon pea (Cajanus cajan L.), their characterization, and measurement of their anti-diabetic and cytotoxic potential. J Food Me:as char:act 2023 Jul 31:1-24. [URL:] [DOI:10.1007/s11694-023-02082-5]
10. Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, et al. Inhibiting angiogenesis by anti-cancer saponins: from phytochemistry to cellular signaling pathways. Metabolites 2023 Feb 22;13(3):323..‏ [PMID: 36984763] [DOI:10.3390/metabo13030323] [PMCID: PMC10052344]
11. Ramezani T, Baharara J, Saghiri N. The Effect of Saffron Aqueous Extract (Crocus sativus L) on Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. J Birjand Univ Med Sci 2014; 21(2):169-178. [URL:]
12. Rezaee R, Hosseinzadeh H. Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci 2013;16(1):12-26. [PMID: 23638289] [PMCID: PMC3637901]
13. Pourmohammad M, Alammar H, Khakzad M, and Khayatzadeh J. Relationship of Asthma Severity with Haemophilus Influenzae Type A Infection in Patients with Asthma Compared to Healthy People. RES MOL MED 2023 May 10;11(2):0 [URL:]
14. Ejaz S, Anwar K, Taj R, Ashraf M. A novel link between angiogenesis and natural products: Anti -angiogenic effects of Opuntia dillenii. Open Life Sci 2014;9(3):298-308. [URL:] [DOI:10.2478/s11535-013-0266-x]
15. Shirali, S., Bathayi, S., Nakhjavani, M., Ashoori, M. Effects of saffron (Crocus Sativus L.) aqueous extract on serum biochemical factors in streptozotocin-induced diabetic rats. IJMAPR 2012; 28(2): 293-308. doi: 10.22092/ijmapr.2012.3045 [URL:]
16. Hajebi S, Homayouni Tabrizi M, Nakhaei Moghaddam M. The antiangiogenic and cytotoxic properties of green synthesized Silver nanoparticles using liquid extract of Rapeseed Flower Pollen. Stud Med Sci 2019; 30 (4):268-280. [URL:]
17. Hormozi M, Talebi S, Khorshid HRK, Zarnani A-H, Kamali K, Jeddi-Tehrani M, et al. The effect of Setarud (IMODTM) on angiogenesis in transplanted human ovarian tissue to nude mice. IIran J Reprod Med 2015;13(10):605. [PMID: 26644788] [PMCID: PMC4668347]
18. Abdullah NK, Shindala MK, Mustafa NG. VEGF Gene Expression and Angiogenesis in the Chorioallantoic Membrane: the Role of Cloprostenol. Egypt J Vet Sci 2023;54(3):359-68. [URL:] [DOI:10.21608/ejvs.2023.183294.1420]
19. Norooznezhad AH, Norooznezhad F,Ahmadi K. Next target of tranilast: inhibition of corneal neovascularization. Med Hypotheses 2014;82(6):700-2. [PMID: 24685109] [DOI:10.1016/j.mehy.2014.03.007]
20. Shakiba Y, Mansouri K, Mostafaie A. Antiangiogenic effect of soybean kunitz trypsin inhibitor on human umbilical vein endothelial cells. Fitoterapia 2007;78(7-8):587-9. [PMID: 17590534] [DOI:10.1016/j.fitote.2007.03.027]
21. Hassan ZM, Feyzi R, Sheikhian A, Bargahi A, Mostafaie A, Mansouri K, et al. Low molecular weight fraction of shark cartilage can modulate immune responses and abolish angiogenesis. Int Immunopharmacol 2005;5(6):961-70. [PMID: 15829412] [DOI:10.1016/j.intimp.2005.01.006]
22. Motlagh HRM, Mansouri K, Shakiba Y, Keshavarz M, Khodarahmi R, Siami A, et al. Antiangiogenic effect of aqueous extract of shallot (Allium ascalonicum) bulbs in rat aorta ring model. Yakhteh Med J 2009;11(2):190-5. [URL:]
23. Daneshvari A, Khayatzadeh J, Pourmohammad M, Tehranipour M, Mahdavi Shahri N. Comparison of the Index Finger and Ring Anthropometric Surveys in the Genetically Deafness Female Population Compared With Healthy Girls With Research Ethnic Background. Iran J Forensic Med 2023 Sep 10;29(2):120-7. [URL:]
24. Mostafaei A, Mansouri K, Norouznezhad A, Mohammadi MH. Anti-angiogenic activity of Ficus carica latex extract on human umbilical vein endothelial cells. Cell J 2011;12(4):525-528. [URL:]
25. Keshavarz M, Norouznezhad A, Mansouri K, Mostafaei A. Cannabinoid (JWH-133) therapy could be effective for treatment of corneal neovascularization. Iran J Med Hypoteses Idea 2010;4(3). [URL:]
26. Pourmohammad M, Jomeh H, khakzad M, Khayatzadeh J, Mokhtari Amirmajdi E. Human papillomavirus and Helicobacter pylori co-infection in gastric cancer patients. Feyz Med Sci J 2023; 27 (6):679-687 [URL:]
27. Nguyen A,Hoang V, Laquer V, Kelly KM. Angiogenesis in cutaneous disease: part I. J Am Acad Dermatol 2009;61(6):921-42. [PMID: 19925924] [DOI:10.1016/j.jaad.2009.05.052]
28. Ghandehari S, HomayouniTabrizi M, Ardalan P. Evaluation of Anti-angiogenic Activity of Silver Nanoparticle Synthesis by Rubina tinctorum L (RuAgNPs) Using Chicken Chorioallantoic Membrane (CAM) Assay. J Arak Uni Med Sci 2018; 21(1):82- 90. [URL:]
29. Shahrokhabadi k, Tavakkol-Afshari J, Brook A. Study of cytotoxic effects of saffron in HepG-2 Cells. Azad Med Univ J 2009; 19(3): 154-159. [URL:]
30. Das I, Das S, Saha T. Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: A histopathological study. Acta Histochem 2010; 112(4): 317-27. [PMID: 19328523] [DOI:10.1016/j.acthis.2009.02.003]
31. Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med (Maywood) 2002; 227(1): 20-5. [PMID: 11788779] [DOI:10.1177/153537020222700104]
32. Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol 2009; 47(8): 1909-13. [PMID: 19457443] [DOI:10.1016/j.fct.2009.05.017]
33. Chermahini SH, Majid FA, Sarmidi MR, Taghizadeh E, Salehnezhad S. Impact of saffron as an anti-cancer and anti-tumor herb. Afr J Pharm Pharmacol 2010 Nov 1;4(11):834-40. [URL:]
34. Premkumar K, Abraham SK, Santhiya ST, Ramesh A. Protective effects of saffron (Crocus sativus Linn.) on genotoxins-induced oxidative stress in Swiss albino mice. Phytother Res 2003; 17(6): 614-7. [PMID: 12820227] [DOI:10.1002/ptr.1209]
35. Kaefer CM, Milner JA. The role of herbs and spices in cancer prevention. J Nutr Biochem 2008; 19(6): 347-61. [PMID: 18499033] [DOI:10.1016/j.jnutbio.2007.11.003] [PMCID: PMC2771684]
36. Zhao C, Kam HT, Chen Y, Gong G, Hoi MP, Skalicka-Woźniak K, et al. Crocetin and its glycoside crocin, two bioactive constituents from Crocus sativus L. (saffron), differentially inhibit angiogenesis by inhibiting endothelial cytoskeleton organization and cell migration through VEGFR2/SRC/FAK and VEGFR2/MEK/ERK signaling pathways. Front Pharmacol 2021 Apr 30;12:675359. [PMID: 33995106] [DOI:10.3389/fphar.2021.675359] [PMCID: PMC8120304]
37. Abdalla A, Murali C, Amin A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: in vitro and ex vivo insights. Front Oncol 2022 Feb 2;11:789172. [PMID: 35211395] [DOI:10.3389/fonc.2021.789172] [PMCID: PMC8862147]
38. Soleymani SM, Assarzadegan F, Habibi SA, Mahboubi A, Esmaily H. The effect of crocin on movement disorders and oxidative DNA damage in Parkinson's disease: Insights from a randomized controlled trial. Parkinsonism Relat Disord 2024 Sep 1;126:107051. [PMID: 39025034] [DOI:10.1016/j.parkreldis.2024.107051]
39. Alavi MS, Fanoudi S, Fard AV, Soukhtanloo M, Hosseini M, Barzegar H, et al. Safranal attenuates excitotoxin-induced oxidative OLN-93 cells injury. Drug research 2019 Jun;69(06):323-9. [PMID: 30463091] [DOI:10.1055/a-0790-8200]
40. Zarrineh M, Ashrafian S, Jensen P, Nawrocki A, Ansari AM, Rezadoost H, et al. Comprehensive proteomics and sialiomics of the anti-proliferative activity of safranal on triple negative MDA-MB-231 breast cancer cell lines. J Proteomics 2022 May 15;259:104539. [PMID: 35240313] [DOI:10.1016/j.jprot.2022.104539]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb