Volume 35, Issue 4 (July 2024)                   Studies in Medical Sciences 2024, 35(4): 274-286 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Herischi A, Ghobeh M, Soleymani J. COMPARATIVE STUDY ON THE EFFECTS OF SEVERAL ERYTHROCYTE LYSING BUFFERS ON THE EXTRACTION OF GENOMIC DNA FROM FROZEN BLOOD SAMPLES IN EVALUATION OF TELOMERE LENGTH BY QPCR METHOD. Studies in Medical Sciences 2024; 35 (4) :274-286
URL: http://umj.umsu.ac.ir/article-1-6250-en.html
Assistant Professor of Pharmaceutical Biomaterials, Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. , jsoleymanii@gmail.com
Abstract:   (1296 Views)
Background & Aim: Studying telomere length is very important for understanding the aging process and disease prevention. The aim of this study was to study the effects of several erythrocyte lysing buffers on the extraction of genomic DNA from frozen blood samples in evaluation of telomere length by qPCR method.
Materials & Methods: In this experimental study, six different erythrocyte lysis buffers along with CTAB extraction buffer were used for DNA extraction. The quantity and purity of the extracted DNA were assessed through absorbance measurements at A260/280 and A260/230 ratios. DNA integrity was evaluated using agarose gel electrophoresis. The consistency of buffer performance was analyzed using the coefficient of variance (CV%) for DNA quantity. Also, the efficiency of PCR was reported by checking the cycle threshold (Ct) in qPCR for each sample using the linear regression equation and coefficient of determination (R2) in GraphPad Prism v10 software. Differences were considered significant at the p>0.05 level.
Results: The lysis buffer with the combination of 10 mM Tris-HCl pH 7.6 and 10 mM KCl resulted in the extraction of the highest amount of DNA (361.01 ng/µL). The results of the gel did not show any fragmentation of DNA in the samples. Absorption ratios did not show much difference between buffers. DNA extracted using a lysis buffer containing 155 mM NH4Cl, 10 mM KHCO3, 5 mM EDTA showed lower variance in DNA quantity (CV = 7.6%) and better PCR efficiency (Efficiency = 103%, R2 = 99.7%) for 36B4 and (Efficiency = 99%, R2 = 99.6%) for telomeres compared to other buffers.
Conclusion: The lysis buffer containing 155 mM NH4Cl, 10 mM KHCO3, and 5 mM EDTA had the most effective performance in extracting DNA from frozen blood samples for telomere study. This buffer with its optimal performance can be used in trials after the final result by further studies.

 
Full-Text [PDF 1859 kb]   (560 Downloads)    
Type of Study: Research | Subject: بیوشیمی

References
1. Lingner J, Cooper JP, Cech TR. Telomerase and DNA end replication: no longer a lagging strand problem? Science;1995;269(5230):1533-4. DOI: 10.1126/SCIENCE.7545310 [DOI:10.1126/science.7545310]
2. Cech TR. Beginning to Understand the End of the Chromosome. Modern Biopharmaceuticals: Design, Development and Optimization. John Wiley & Sons, Ltd; 2008;1:36-48. DOI: 10.1002/9783527620982.CH1 [DOI:10.1002/9783527620982.ch1]
3. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. NIH Public Access; 2011;14(1):28. DOI: 10.1097/MCO.0B013E32834121B1 [DOI:10.1097/MCO.0b013e32834121b1]
4. Zhang W, Song M, Qu J, Liu G-H. Epigenetic Modifications in Cardiovascular Aging and Diseases. Circ Res 2018;123(7):773-86. DOI: 10.1161/CIRCRESAHA.118.312497 [DOI:10.1161/CIRCRESAHA.118.312497]
5. Bekaert S, De Meyer T, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, et al. Telomere length and cardiovascular risk factors in a middle‐aged population free of overt cardiovascular disease. Aging Cell 2007;6(5):639-47. DOI: 10.1111/j.1474-9726.2007.00321.x [DOI:10.1111/j.1474-9726.2007.00321.x]
6. Carpi FM, Di Pietro F, Vincenzetti S, Mignini F, Napolioni V. Human DNA extraction methods: patents and applications. Recent Pat DNA Gene Seq. Recent Pat DNA Gene Seq 2011;5(1):1-7. DOI: 10.2174/187221511794839264 [DOI:10.2174/187221511794839264]
7. Di Pietro F, Ortenzi F, Tilio M, Concetti F, Napolioni V. Genomic DNA extraction from whole blood stored from 15- to 30-years at −20 °C by rapid phenol-chloroform protocol: A useful tool for genetic epidemiology studies. Mol Cell Probes 2011;25(1):44-8. DOI: 10.1016/j.mcp.2010.10.003 [DOI:10.1016/j.mcp.2010.10.003]
8. Seeker LA, Holland R, Underwood S, Fairlie J, Psifidi A, Ilska JJ, et al. Method Specific Calibration Corrects for DNA Extraction Method Effects on Relative Telomere Length Measurements by Quantitative PCR. PLoS One 2016;11(10):164046. DOI: 10.1371/JOURNAL.PONE.0164046 [DOI:10.1371/journal.pone.0164046]
9. Clarke JD. Cetyltrimethyl Ammonium Bromide (CTAB) DNA Miniprep for Plant DNA Isolation. Cold Spring Harb Protoc 2009;2009(3):pdb.prot5177. DOI: 10.1101/pdb.prot5177 [DOI:10.1101/pdb.prot5177]
10. Chacon-Cortes D, Haupt LM, Lea RA, Griffiths LR. Comparison of genomic DNA extraction techniques from whole blood samples: a time, cost and quality evaluation study. Mol Biol Rep 2012;39(5):5961-6. DOI: 10.1007/s11033-011-1408-8 [DOI:10.1007/s11033-011-1408-8]
11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin Chem 2009;55(4):611-22. DOI: 10.1373/clinchem.2008.112797 [DOI:10.1373/clinchem.2008.112797]
12. Sidstedt M, Hedman J, Romsos EL, Waitara L, Wadsö L, Steffen CR, et al. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR. Anal Bioanal Chem 2018;410(10):2569-83. DOI: 10.1007/s00216-018-0931-z [DOI:10.1007/s00216-018-0931-z]
13. Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. Identification of the Heme Compound Copurified with Deoxyribonucleic Acid (DNA) from Bloodstains, a Major Inhibitor of Polymerase Chain Reaction (PCR) Amplification. J Forensic Sci 1994;39(2):362-72. DOI: 10.1520/JFS13607J [DOI:10.1520/JFS13607J]
14. Maddocks S, Jenkins R. Understanding PCR : a practical bench-top guide 2017 [cited 2024 Mar 19]. Available from: http://www.sciencedirect.com/science/article/pii/B978012802683000006X [URL]
15. Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. Elsevier Ireland Ltd; 2003;339(1):62-6. DOI: 10.1016/S0304-3940(02)01423-4 [DOI:10.1016/S0304-3940(02)01423-4]
16. Brown WE, Hu JC, Athanasiou KA. Ammonium-Chloride-Potassium Lysing Buffer Treatment of Fully Differentiated Cells Increases Cell Purity and Resulting Neotissue Functional Properties. Tissue Eng Part C Methods 2016;22(9):895-903. DOI: 10.1089/ten.tec.2016.0184 [DOI:10.1089/ten.tec.2016.0184]
17. Qamar W, Khan MR, Arafah A. Optimization of conditions to extract high quality DNA for PCR analysis from whole blood using SDS-proteinase K method. Saudi J Biol Sci 2017;24(7):1465-9. DOI: 10.1016/j.sjbs.2016.09.016 [DOI:10.1016/j.sjbs.2016.09.016]
18. Song Y, Fahs A, Feldman C, Shah S, Gu Y, Wang Y, et al. A reliable and effective method of DNA isolation from old human blood paper cards. Springerplus. Springer; 2013;2(1):1-7. DOI: 10.1186/2193-1801-2-616 [DOI:10.1186/2193-1801-2-616]
19. Joglekar M V., Satoor SN, Wong WKM, Cheng F, Ma RCW, Hardikar AA. An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length. Methods Protoc 2020;3(2):27. DOI: 10.3390/mps3020027 [DOI:10.3390/mps3020027]
20. Thilagavathi J, Mishra SS, Kumar M, Vemprala K, Deka D, Dhadwal V, et al. Analysis of telomere length in couples experiencing idiopathic recurrent pregnancy loss. J Assist Reprod Genet Springer; 2013;30(6):793. DOI: 10.1007/S10815-013-9993-1 [DOI:10.1007/s10815-013-9993-1]
21. JA G. Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques 1995 [cited 2024 Feb 5];62-3. Available from: https://europepmc.org/article/med/7702855 [PMID]
22. Liu P, Avramova L, Park C. Revisiting absorbance at 230 nm as a protein unfolding probe. Anal Biochem 2009 [cited 2024 Feb 5]; Available from: https://www.sciencedirect.com/science/article/pii/S0003269709001894?casa_token=NHGOkCUTQFwAAAAA:BY9csLSg7pNQb0pxGLlmWFl4SczETZMFlcGg_hLYIYyM-FOKSYJhZJPkCRsaLtezjUJU_cTFBA [Google Scholar]
23. O'Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biol Proced Online 2011;13(1):3. DOI: 10.1186/1480-9222-13-3 [DOI:10.1186/1480-9222-13-3]
24. Shechtman O. The Coefficient of Variation as an Index of Measurement Reliability. Springer, Berlin, Heidelberg; 2013;39-49. DOI: 10.1007/978-3-642-37131-8_4 [DOI:10.1007/978-3-642-37131-8_4]
25. Aronhime S, Calcagno C, Jajamovich GH, Dyvorne HA, Robson P, Dieterich D, et al. DCE-MRI of the Liver: Effect of Linear and Nonlinear Conversions on Hepatic Perfusion Quantification and Reproducibility. J Magn Reson Imaging. V C 2013 Wiley Periodicals, Inc; 2014;40:90-8. DOI: 10.1002/jmri.24341 [DOI:10.1002/jmri.24341]
26. Zhou L, Lei Q, Guo J, Gao Y, Shi J, Yu H, et al. Long-term whole blood DNA preservation by cost-efficient cryosilicification. Nat Commun 2022;13(1):6265. DOI: 10.1038/s41467-022-33759-y [DOI:10.1038/s41467-022-33759-y]
27. Madisen L, Hoar DI, Holroyd CD, Crisp M, Hodes ME. DNA banking: the effects of storage of blood and isolated DNA on the integrity of DNA. Am J Med Genet 1987;27(2):379-90. DOI: 10.1002/AJMG.1320270216 [DOI:10.1002/ajmg.1320270216]
28. Di Pietro F, Ortenzi F, Tilio M, Concetti F, Napolioni V. Genomic DNA extraction from whole blood stored from 15- to 30-years at -20 °C by rapid phenol-chloroform protocol: a useful tool for genetic epidemiology studies. Mol Cell Probes. Mol Cell Probes 2011;25(1):44-8. DOI: 10.1016/J.MCP.2010.10.003 [DOI:10.1016/j.mcp.2010.10.003]
29. Dahm R. Friedrich Miescher and the discovery of DNA. Dev Biol Academic Press; 2005;278(2):274-88. DOI: 10.1016/J.YDBIO.2004.11.028 [DOI:10.1016/j.ydbio.2004.11.028]
30. Møller P, Bankoglu EE, Stopper H, Giovannelli L, Ladeira C, Koppen G, et al. Collection and storage of human white blood cells for analysis of DNA damage and repair activity using the comet assay in molecular epidemiology studies. Mutagenesis 2021;36(3):193-212. DOI: 10.1093/mutage/geab012 [DOI:10.1093/mutage/geab012]
31. Heikrujam J, Kishor R, Mazumder PB, Heikrujam J, Kishor R, Mazumder PB. The Chemistry Behind Plant DNA Isolation Protocols. Biochem Anal Tools;2020:131-42. DOI: 10.5772/INTECHOPEN.92206 [DOI:10.5772/intechopen.92206]
32. Brown WE, Hu JC, Athanasiou KA. Ammonium-chloride-potassium lysing buffer treatment of fully differentiated cells increases cell purity and resulting neotissue functional properties. Tissue Eng Part C Methods;2016;22(9):895-903. DOI: 10.1089/TEN.TEC.2016.0184 [DOI:10.1089/ten.tec.2016.0184]
33. Phillips WA, Hosking CS, Shelton MJ. Effect of ammonium chloride treatment on human polymorphonuclear leucocyte iodination. J Clin Pathol 1983;36(7):808. DOI: 10.1136/JCP.36.7.808 [DOI:10.1136/jcp.36.7.808]
34. Kleiner D. The transport of NH3 and HN4+ across biological membranes. Biochim Biophys Acta 1981;639(1):41-52. DOI: 10.1016/0304-4173(81)90004-5 [DOI:10.1016/0304-4173(81)90004-5]
35. Bonar PT, Casey JR. Channels Plasma Membrane Cl-/HCO 3-exchangers: Structure, mechanism and physiology. Channels 2008;337(5):337-45. DOI: 10.4161/chan.2.5.6899 [DOI:10.4161/chan.2.5.6899]
36. Raven PH, RFE and SE. Raven: Biology of plants - Google Scholar Macmillan; 2005 [cited 2023 Dec 5]. Available from: https://scholar.google.com/scholar_lookup?title=Biology&author=PH+Raven&author=GB+Johnson&publication_year=2002& [PMID]
37. Lahiri DK, Schnabel B. DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem Genet. Biochem Genet 1993;31(7-8):321-8. DOI: 10.1007/BF02401826 [DOI:10.1007/BF02401826]
38. Nasrollahzadehsabet M, Esmeilzadeh E, Shirmohammady N, Heidari MF. The Effect of EDTA Buffer and Temperature on DNA Extraction from Teeth for Molecular Forensic Assessment. Ann Milit Health Sci Res 2021;19(2). DOI: 10.5812/amh.113043 [DOI:10.5812/amh.113043]
39. Schenk JJ, Becklund LE, Carey SJ, Fabre PP. What is the "modified" CTAB protocol? Characterizing modifications to the CTAB DNA extraction protocol. Appl Plant Sci 2023;11(3). DOI: 10.1002/APS3.11517 [DOI:10.1002/aps3.11517]
40. Huang LH, Lin PH, Tsai KW, Wang LJ, Huang YH, Kuo HC, et al. The effects of storage temperature and duration of blood samples on DNA and RNA qualities. PLoS One 2017;12(9). DOI: 10.1371/JOURNAL.PONE.0184692 [DOI:10.1371/journal.pone.0184692]
41. Bustin SA, editor. AZ of quantitative PCR. La Jolla, CA: International University Line; 2004. Available from: https://fivephoton.com/pdfs/A-Z%20Quantitative%20PCR,%20ISBN%20%200-9636817-8-8,%20Item%20QPCR-1.pdf [URL]
42. Martin-Ruiz CM, Baird D, Roger L, Boukamp P, Krunic D, Cawthon R, et al. Reproducibility of Telomere Length Assessment - An International Collaborative Study. Int J Epidemiol 2015;44(5):1749-54. DOI: 10.1093/ije/dyv171 [DOI:10.1093/ije/dyv171]
43. Cunningham JM, Johnson RA, Litzelman K, Skinner HG, Seo S, Engelman CD, et al. Telomere length varies by DNA extraction method: Implications for epidemiologic research. Cancer Epidemiol Biomarkers Prev 2013;22(11):2047-54. DOI: 10.1158/1055-9965.EPI-13-0409 [DOI:10.1158/1055-9965.EPI-13-0409]
44. Tolios A, Teupser D, Holdt LM. Preanalytical Conditions and DNA Isolation Methods Affect Telomere Length Quantification in Whole Blood. PLoS One 2015;10(12):e0143889. DOI: 10.1371/JOURNAL.PONE.0143889 [DOI:10.1371/journal.pone.0143889]
45. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res 2002;30(10):47e-47. DOI: 10.1093/nar/30.10.e47 [DOI:10.1093/nar/30.10.e47]
46. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 1997;63(10):3741. DOI: 10.1128/AEM.63.10.3741-3751.1997 [DOI:10.1128/aem.63.10.3741-3751.1997]
47. Al-Soud WA, Rådström P. Purification and Characterization of PCR-Inhibitory Components in Blood Cells. J Clin Microbiol 2001;39(2):485. DOI: 10.1128/JCM.39.2.485-493.2001 [DOI:10.1128/JCM.39.2.485-493.2001]
48. Al-Soud WA, Jönsson LJ, Rådström P. Identification and characterization of immunoglobulin G in blood as a major inhibitor of diagnostic PCR. J Clin Microbiol 2000;38(1):345-50. DOI: 10.1128/JCM.38.1.345-350.2000 [DOI:10.1128/JCM.38.1.345-350.2000]
49. Rubin RL, Carr RI. Anti-DNA Activity of IgG F(ab′)2 from Normal Human Serum. J Immunol 1979;122(4):1604-7. Available from: https://journals.aai.org/jimmunol/article-abstract/122/4/1604/10845 [DOI:10.4049/jimmunol.122.4.1604]
50. Rådström P, Löfström C, Lövenklev M, Knutsson R, Wolffs P. Strategies for Overcoming PCR Inhibition. Cold Spring Harb Protoc 2008;2008(3):pdb.top20. DOI: 10.1101/pdb.top20 [DOI:10.1101/pdb.top20]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb