Volume 34, Issue 12 (12-2023)                   Studies in Medical Sciences 2023, 34(12): 742-752 | Back to browse issues page

Research code: IR.TBZMED.REC.1395.967
Ethics code: IR.TBZMED.REC.1395.967
Clinical trials code: ------------------


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Valizadeh R, Abasi E, Jalili R, Mohajeri N, Alizadeh E. EVALUATION OF PLATINUM NANOPARTICLES EFFECTS ON CELL CYCLE AND EXPRESSION OF SOX2 AND OCT-4 GENES IN MESENCHYMAL STEM CELLS. Studies in Medical Sciences 2023; 34 (12) :742-752
URL: http://umj.umsu.ac.ir/article-1-6181-en.html
Associate Professor of Medical Biotechnology, Department of Medical Biotechnology, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (Corresponding Author) , e.alizadeh.2010@gmail.com
Abstract:   (1811 Views)
Background & Aims: The Mesenchymal Stem Cells (MSCs) are a population of widely used cells in cell/gene therapy which are necessary to maintain their stemness properties to guarantee their proper function in medical applications. Platinum nanoparticles are one of the materials that have various applications in the medical world. The aim of this work was to evaluate platinum nanoparticles effect on MSCs cell cycle and Oct-4 and Sox-2 expression in vitro.
Materials & Methods: In this experimental study, after the synthesis of platinum nanoparticles, their dynamic shape and size were checked by TEM and their charge by DLS test. Then, the culture of mesenchymal stem cells and their survival after treatment with platinum nanoparticles (pt) were investigated. In addition, the expression levels of Sox-2 and Oct-4 genes were evaluated in cells treated with nanoparticles. Also, the effects of platinum nanoparticles on cell cycle and colony formation in stem cells were evaluated. Statistical analyzes were performed with Graph Pad Prism version 10 software. The significance level was defined as p<0.05.
Results: Based on the obtained results, the morphology of spherical nanoparticles and their size was 180 nm and their charge was +25.8. Cytotoxicity test showed that the effects of these nanoparticles on cells are dose and time dependent. Also, in the presence of platinum, the cell cycle of stem cells underwent many changes, especially the increase in the percentage of cells in the S phase. Real-time PCR results showed that in the presence of platinum nanoparticles, there is a decrease in Sox-2 and Oct4 gene expression, which has led to a decrease in the stemness properties of mesenchymal stem cells. Also, their clonogenic potential was also weakened.
Conclusion: We concluded that due to the possible negative effects of platinum nanoparticles on the stemness of MSCs, platinum nanoparticles should be used with caution in long-term medical applications. Therefore, it is suggested to reduce the dose, frequency and duration of using platinum nanoparticles as much as possible.

 
Full-Text [PDF 606 kb]   (875 Downloads)    
Type of Study: Research | Subject: بیوشیمی

References
1. Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field. release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol 2021;19(1):1-19. [DOI:10.1186/s12951-021-00958-6] [PMID] []
2. He F, Cao J, Qi J, Liu Z, Liu G, Deng W. Regulation of Stem Cell Differentiation by Inorganic Nanomaterials. Recent Advances in Regenerative Medicine. Front Bioeng Biotechnol 2021;9(September):1-10. [DOI:10.3389/fbioe.2021.721581] [PMID] []
3. Fu X, Liu G, Halim A, Ju Y, Luo Q, Song G. Mesenchymal Stem Cell Migration and Tissue Repair. Cells 2019;8(8). [DOI:10.3390/cells8080784] [PMID] []
4. Ikono R, Li N, Pratama NH, Vibriani A, Yuniarni DR, Luthfansyah M et al. Enhanced bone regeneration capability of chitosan sponge coated with TiO2 nanoparticles. Bioethanol Rep 2019; 24. [DOI:10.1016/j.btre.2019.e00350] [PMID] []
5. Sun Y, Lu Y, Yin L, Liu Z. The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease. Front Bioeng Biotechnol 2020;8(August):1-12. [DOI:10.3389/fbioe.2020.00947] [PMID] []
6. Dong Y, Wu X, Chen X, Zhou P, Xu F, Liang W. Nanotechnology shaping stem cell therapy. Recent advances, application, challenges, and future outlook. Biomed. Pharmacother 2021;137(December 2020):111236. [DOI:10.1016/j.biopha.2021.111236] [PMID]
7. Pan S, Yu H, Yang X, Yang X, Wang Y, Liu Q, et al. Application of Nanomaterials in Stem Cell Regenerative Medicine of Orthopedic Surgery. J Nanomater 2017;2017:1985942. [DOI:10.1155/2017/1985942]
8. Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY et al. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int J Mol Sci 2020;21(14):1-29. [DOI:10.3390/ijms21145174] [PMID] []
9. Zhang Z, Fu X, Xu L, Hu X, Deng F, Yang Z et al. Nanosized Alumina Particle and Proteasome Inhibitor Bortezomib Prevented inflammation and Osteolysis Induced by Titanium Particle via Autophagy and NF-κB Signaling. Sci Rep 2020;10(1):1-12. [DOI:10.1038/s41598-020-62254-x] [PMID] []
10. Soleimany L, Zare S, Hobbenaghi R, Delirezh N, Hushmandi K. comparison effect of bone marrow derived mesenchymal stem cells and stimulated bone marrow mesenchymal stem cells with LPS on healing of induced third-degree skin burn in mouse. Stud Med Sci 2017;27(11):1012-24. [Google Scholar]
11. Zhang C, Xu C, Gao X, Yao Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022;12(5):2115-32. [DOI:10.7150/thno.69424] [PMID] []
12. Moon KS, Choi EJ, Bae JM, Park YB, Oh S. Visible light-enhanced antibacterial and osteogenic functionality of Au and Pt nanoparticles deposited on TiO2 nanotubes. Materials 2020;13(17). [DOI:10.3390/ma13173721] [PMID] []
13. Sathiyaraj G, Vinosha M, Sangeetha D, Manikandakrishnan M, Palanisamy S, Sonaimuthu M et al. Bio-directed synthesis of Pt-nanoparticles from aqueous extract of red algae Halymenia dilatata and their biomedical applications. Colloids Surf. A [Internet]. 2021;618(March):126434. [DOI:10.1016/j.colsurfa.2021.126434]
14. Ramkumar VS, Pugazhendhi A, Prakash S, Ahila NK, Vinoj G, Selvam S et al. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed Pharmacother 2017; 92:479-90. [DOI:10.1016/j.biopha.2017.05.076] [PMID]
15. Selvi AM, Palanisamy S, Jeyanthi S, Vinosha M, Mohandoss S, Tabarsa M et al. Synthesis of Tragia involucrata mediated platinum nanoparticles for comprehensive therapeutic applications: Antioxidant, antibacterial and mitochondria-associated apoptosis in HeLa cells. Process Biochem 2020; 98:21-33. [DOI:10.1016/j.procbio.2020.07.008]
16. Lee J-W, Son J, Yoo K-M, Lo YM, Moon B. Characterization of the antioxidant activity of gold@platinum nanoparticles. RSC Adv 2014;4(38):19824-30. [DOI:10.1039/c4ra01765j]
17. Zheng B, Kong T, Jing X, Odoom-Wubah T, Li X, Sun D et al. Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. J. Colloid Interface Sci 2013;396:138-45. [DOI:10.1016/j.jcis.2013.01.021] [PMID]
18. Rehman MU, Yoshihisa Y, Miyamoto Y, Shimizu T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflammation Res 2012;61:1177-85. [DOI:10.1007/s00011-012-0512-0] [PMID]
19. Tan L, Liu X, Dou H, Hou Y. ScienceDirect Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment d specific factors involved in the regulation of MSC plasticity. Genes Dis 2020. [Google Scholar]
20. Moosavi MA, Moghtaran Bonab N, Hoseinpour Feizi MA, Asvadi Kermani I. study the effect of nucleostemin gene silencing by sirna on growth inhibition and differentiation in NB4 promyelocytic leukemia cell line. Stud Med Sci 2013;24(2):121-32. [Google Scholar]
21. Heib T, Gross C, Müller ML, Stegner D, Pleines I. Isolation of murine bone marrow by centrifugation or flushing for the analysis of hematopoietic cells-a comparative study. Platelets 2021;32(5):601-7. [DOI:10.1080/09537104.2020.1797323] [PMID]
22. Gurunathan S, Jeyaraj M, La H, Yoo H, Choi Y, Do JT et al. Anisotropic Platinum Nanoparticle-Induced Cytotoxicity, Apoptosis, Inflammatory Response, and Transcriptomic and Molecular Pathways in Human Acute Monocytic Leukemia Cells. Int J Mol Sci 2020;21(2):440. [DOI:10.3390/ijms21020440] [PMID] []
23. Long NV, Chien ND, Hayakawa T, Hirata H, Lakshminarayana G, Nogami M. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology. Nanotechnology 2009;21(3):035605. [DOI:10.1088/0957-4484/21/3/035605] [PMID]
24. Rahman MS, Akhter S, Ahmed KN, Rahman MS, Saha RK, Hossain MJ. Tunable synthesis of platinum nanoparticles by EtOH reduction in presence of poly (vinylpyrrolidone). Bangladesh J Sci Ind Res 2015;50(2):87-92. [DOI:10.3329/bjsir.v50i2.24349]
25. Hassanlou L, Meshgini S, Alizadeh E. Evaluating adipocyte differentiation of bone marrow-derived mesenchymal stem cells by a deep learning method for automatic lipid droplet counting. Comput Biol Med 2019;112(207). [DOI:10.1016/j.compbiomed.2019.103365] [PMID]
26. Goldman SM, Henderson BEP, Corona BT. Evaluation of bone marrow mononuclear cells as an adjunct therapy to minced muscle graft for the treatment of volumetric muscle loss injuries. Stem Cell Res Ther 2017;8(1):1-6. [DOI:10.1186/s13287-017-0589-z] [PMID] []
27. Hashemi F, Heidari F, Mohajeri N, Zarghami N. Fluorescence Intensity Enhancement of Green Carbon Dots : Synthesis, Characterization Cell Imaging Photochem Photobiol 2020 [DOI:10.1111/php.13261] [PMID]
28. (18):1-9. 28. F. Pouremamali, F. Jeddi NS. Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line. Process Biochem 2020. [Google Scholar]
29. Arezoumand KS, Alizadeh E, Esmaeillou M, Ghasemi M, Alipour S, Pilehvar-Soltanahmadi Y et al. The emu oil emulsified in egg lecithin and butylated hydroxytoluene enhanced the proliferation, stemness gene expression, and in vitro wound healing of adipose-derived stem cells. Vitr Cell Dev Biol - Anim 2018;54(3):205-16. [DOI:10.1007/s11626-018-0228-8] [PMID]
30. Asadi M, Lotfi H, Salehi R, Mehdipour A, Zarghami N, Akbarzadeh A, et al. Hepatic cell-sheet fabrication of differentiated mesenchymal stem cells using decellularized extracellular matrix and thermoresponsive polymer. Biomed Pharmacother 2021;134(July 2020):111096. [DOI:10.1016/j.biopha.2020.111096] [PMID]
31. Xu J, Zhang Y, Xu J, Wang M, Liu G, Wang J et al. Reversing tumor stemness via orally targeted nanoparticles achieves efficient colon cancer treatment. Biomaterials 2019;216(June):119247. [DOI:10.1016/j.biomaterials.2019.119247] [PMID]
32. Heurtier V, Owens N, Gonzalez I, Mueller F, Proux C, Mornico D et al. The molecular logic of Sox-2-induced self-renewal in mouse embryonic stem cells. Nat Commun 2019;10(1). [DOI:10.1038/s41467-019-09041-z] [PMID] []
33. Rajanahalli P, Stucke CJ, Hong Y. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation. Toxicol Rep 2015; 2:758-64. [DOI:10.1016/j.toxrep.2015.05.005] [PMID] []
34. Cowley A. A healthy future: platinum in medical applications. Platinum Met Rev 2011;55(2):98-107. [DOI:10.1595/147106711X566816]
35. Zhang C, Xu C, Gao X, Yao Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022;12(5):2115. [DOI:10.7150/thno.69424] [PMID] []
36. Wang Z, Wang J, Liu J, Zhang Y, Zhang J, Yang R et al. Platinum nanoparticles enhance osteogenic differentiation of human dental follicle stem cells via scavenging ROS. Smart Mater Med 2023. [DOI:10.1016/j.smaim.2023.06.004]
37. Sarikhani M, Vaghefi Moghaddam S, Firouzamandi M, Hejazy M, Rahimi B, Moeini H, Alizadeh E. Harnessing rat derived model cells to assess the toxicity of TiO2 nanoparticles. J Mater Sci Mater Med. 2022;33(5):41. [DOI:10.1007/s10856-022-06662-7] [PMID] []
38. Pourheydar B, Shahi M, Farjah GH, Javanmard M, Karimipour M, Atabaki F. Evaluation of apoptosis in hippocampal cells of rat following intravenous injection of bone marrow stromal cells in ischemia-reperfusion model. Stud Med Sci 2014; 25(7):586-97. [Google Scholar]
39. Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artif Cells Nanomed Biotechnol 2017;45(3):535-543. [DOI:10.3109/21691401.2016.1161637] [PMID]
40. Gurunathan S, Jeyaraj M, La H, Yoo H, Choi Y, Do JT et al. Anisotropic platinum nanoparticle-induced cytotoxicity, apoptosis, inflammatory response, and transcriptomic and molecular pathways in human acute monocytic leukemia cells. Int J Mol Sci 2020;21(2):440. [DOI:10.3390/ijms21020440] [PMID] []
41. Sarikhani M, Vaghefi Moghaddam S, Firouzamandi M, Hejazy M, Rahimi B, Moeini H et al. Harnessing rat derived model cells to assess the toxicity of TiO2 nanoparticles. J Mater Sci Mater Med 2022;33(5):41. [DOI:10.1007/s10856-022-06662-7] [PMID] []
42. Deylam M, Alizadeh E, Sarikhani M, Hejazy M, Firouzamandi M. Zinc oxide nanoparticles promote the aging process in a size-dependent manner. J Mater Sci Mater Med 2021;32:1-0. [DOI:10.1007/s10856-021-06602-x] [PMID] []
43. Abed, A. S., Mishaal Mohammed, A., & Khalaf, Y. H. (2022). Novel photothermal therapy using platinum nanoparticles in synergy with near-infrared radiation (NIR) against human breast cancer MCF-7 cell line. [DOI:10.1016/j.rechem.2022.100591]
44. Manzoor S, Bashir DJ, Imtiyaz K, Rizvi MMA, Ahamad I, Fatma T, Agarwal NB, Arora I, Samim M. Biofabricated platinum nanoparticles: therapeutic evaluation as a potential nanodrug against breast cancer cells and drug-resistant bacteria. RSC Adv 2021;11(40):24900-24916. [DOI:10.1039/D1RA03133C] [PMID] []
45. Alyami NM, Almeer R, Alyami HM. Role of green synthesized platinum nanoparticles in cytotoxicity, oxidative stress, and apoptosis of human colon cancer cells (HCT-116). Heliyon 2022;8(12):e11917. [DOI:10.1016/j.heliyon.2022.e11917] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb