Volume 34, Issue 12 (March 2024)                   Studies in Medical Sciences 2024, 34(12): 794-815 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi V, Ahmadpour M, Mehranfar S, Shiri Haris R, Hoseini A. Janus kinase inhibitors: A new therapeutic option for autoimmune diseases. Studies in Medical Sciences 2024; 34 (12) :794-815
URL: http://umj.umsu.ac.ir/article-1-6156-en.html
Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran (Corresponding Author) , hosseiniare@yahoo.com
Abstract:   (874 Views)
Many cytokines are crucial drivers of cancers and autoimmune conditions. These proteins bind to receptors and signal their responses through Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways. Genetic variations in the JAK–STAT pathway are correlated with the increased risk of cancers, autoimmunity as well as inflammatory diseases. Targeting JAKs and STATs can be a safe and efficacious strategy for treating these diseases. Tofacitinib, as the first JAK inhibitor, is approved for rheumatoid arthritis therapy. Also, many other JAK inhibitors have been proven or are in various phases of clinical trials for various diseases. At present, small‐molecule JAK inhibitors are considered as a novel category of drugs in the treatment of cancer and immune‐mediated diseases.



 
Full-Text [PDF 686 kb]   (288 Downloads)    
Type of Study: Review article | Subject: ایمونولوژی

References
1. Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol 2003;111(2):S460-S75. [DOI:10.1067/mai.2003.108] [PMID]
2. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 2008;118(11):3537-45. [DOI:10.1172/JCI36389] [PMID] []
3. Azizieh F, Raghupathy R, Shehab D, Al-Jarallah K, Gupta R. Cytokine profiles in osteoporosis suggest a proresorptive bias. Menopause 2017;24(9):1057-64. [DOI:10.1097/GME.0000000000000885] [PMID]
4. Chowdhury AA, Gawali NB, Shinde P, Munshi R, Juvekar AR. Imperatorin ameliorates lipopolysaccharide induced memory deficit by mitigating proinflammatory cytokines, oxidative stress and modulating brain-derived neurotropic factor. Cytokine 2018;110:78-86. [DOI:10.1016/j.cyto.2018.04.018] [PMID]
5. Schwartz DM, Bonelli M, Gadina M, O'shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 2016;12(1):25-36. [DOI:10.1038/nrrheum.2015.167] [PMID] []
6. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev 2004;202(1):275-93. [DOI:10.1111/j.0105-2896.2004.00199.x] [PMID]
7. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010;138(6):2101-14. e5. [DOI:10.1053/j.gastro.2010.01.058] [PMID]
8. McInnes IB, Liew FY. Cytokine networks-towards new therapies for rheumatoid arthritis. Nat Clin Pract Rheumatol 2005;1(1):31-9. [DOI:10.1038/ncprheum0020] [PMID]
9. Aittomäki S, Pesu M. Therapeutic targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol 2014;114(1):18-23. [DOI:10.1111/bcpt.12164] [PMID]
10. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015;66:311-28. [DOI:10.1146/annurev-med-051113-024537] [PMID] []
11. O'Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 2013;72(suppl 2):ii111-ii5. [DOI:10.1136/annrheumdis-2012-202576] [PMID] []
12. Schwartz DM, Bonelli M, Gadina M, O'shea J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 2016;12(1):25-36. [DOI:10.1038/nrrheum.2015.167] [PMID] []
13. Fuss IJ, Neurath M, Boirivant M, Klein JS, De La Motte C, Strong SA, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol Res 1996;157(3):1261-70. [DOI:10.4049/jimmunol.157.3.1261] [PMID]
14. Kobayashi T, Okamoto S, Hisamatsu T, Kamada N, Chinen H, Saito R, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut 2008;57(12):1682-9. [DOI:10.1136/gut.2007.135053] [PMID]
15. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol 2015;15(5):295-307. [DOI:10.1038/nri3824] [PMID] []
16. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008;118(2):534-44. [DOI:10.1172/JCI33194] [PMID] []
17. Wong C, Li E, Ho C, Lam CJR. Elevation of plasma interleukin‐18 concentration is correlated with disease activity in systemic lupus erythematosus. Rheumatology 2000;39(10):1078-81. [DOI:10.1093/rheumatology/39.10.1078] [PMID]
18. Talaat RM, Mohamed SF, Bassyouni IH, Raouf AA. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine 2015;72(2):146-53. [DOI:10.1016/j.cyto.2014.12.027] [PMID]
19. Kleczynska W, Jakiela B, Plutecka H, Milewski M, Sanak M, Musial J. Imbalance between Th17 and regulatory T-cells in systemic lupus erythematosus. Folia Histochem Cytobiol 2011;49(4):646-53. [DOI:10.5603/FHC.2011.0088] [PMID]
20. Wang Y-F, Zhang Y, Lin Z, Zhang H, Wang T-Y, Cao Y, et al. Identification of 38 novel loci for systemic lupus erythematosus and genetic heterogeneity between ancestral groups. Nat Commun 2021;12(1):772. [DOI:10.1038/s41467-021-21049-y] [PMID] []
21. Azizieh FY, Al Jarallah K, Shehab D, Gupta R, Dingle K, Raghupathy R. Patterns of circulatory and peripheral blood mononuclear cytokines in rheumatoid arthritis. Rheumatol Int 2017;37:1727-34. [DOI:10.1007/s00296-017-3774-6] [PMID]
22. Leipe J, Schramm MA, Grunke M, Baeuerle M, Dechant C, Nigg AP, et al. Interleukin 22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann Rheum Dis 2011;70(8):1453-7. [DOI:10.1136/ard.2011.152074] [PMID]
23. Ghosh S, Mukherjee S, Sengupta A, Chowdhury S, Sarkar S, Keswani T, et al. CD4+ IL9+ (Th9) cells as the major source of IL-9, potentially modulate Th17/Treg mediated host immune response during experimental cerebral malaria. Mol Immunol 2022;152:240-54. [DOI:10.1016/j.molimm.2022.11.005] [PMID]
24. Gharibi T, Majidi J, Kazemi T, Dehghanzadeh R, Motallebnezhad M, Babaloo Z. Biological effects of IL-21 on different immune cells and its role in autoimmune diseases. Immunobiology 2016;221(2):357-67. [DOI:10.1016/j.imbio.2015.09.021] [PMID]
25. Spolski R, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014;13(5):379-95. [DOI:10.1038/nrd4296] [PMID]
26. Lin W-W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007;117(5):1175-83. [DOI:10.1172/JCI31537] [PMID] []
27. Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev 2006;17(5):325-37. [DOI:10.1016/j.cytogfr.2006.07.002] [PMID]
28. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 2017;3(4):524-48. [DOI:10.1001/jamaoncol.2016.5688] [PMID] []
29. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007;67(2):585-92. [DOI:10.1158/0008-5472.CAN-06-2941] [PMID] []
30. Kawamura R. A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J Phys Oceanogr 1994;24(3):707-15. https://doi.org/10.1175/1520-0485(1994)024<0707:AREAOG>2.0.CO;2 https://doi.org/10.1175/1520-0485(1994)024<0707:AREAOG>2.0.CO;2 [DOI:10.1175/1520-0485(1994)0242.0.CO;2]
31. Schindler C. Cytokines and JAK-STAT signaling. Experimental cell research. 1999;253(1):7-14. [DOI:10.1006/excr.1999.4670] [PMID]
32. Hoffman SM, Gordon L, Mohrenweiser H, Lai KS. JAK3 maps to human chromosome 19p12 within a cluster of protooncogenes and transcription factors. Genomics 1997;43(1). [DOI:10.1006/geno.1997.4792] [PMID]
33. Leonard WJ, O'Shea JJ. Jaks and STATs: biological implications. Ann Rev Immunol 1998;16(1):293-322. [DOI:10.1146/annurev.immunol.16.1.293] [PMID]
34. Hammarén HM, Ungureanu D, Grisouard J, Skoda RC, Hubbard SR, Silvennoinen O. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proc Natl Acad Sci U S A 2015;112(15):4642-7. [DOI:10.1073/pnas.1423201112] [PMID] []
35. Yeh T, Pellegrini S. The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell Mol Life Sci 1999;55:1523-34. [DOI:10.1007/s000180050392] [PMID]
36. Malemud CJ. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2018;10(5-6):117-27. [DOI:10.1177/1759720X18776224] [PMID] []
37. Saharinen P, Vihinen M, Silvennoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell 2003;14(4):1448-59. [DOI:10.1091/mbc.e02-06-0342] [PMID] []
38. Clark JD, Flanagan ME, Telliez J-B. Discovery and development of Janus Kinase (JAK) inhibitors for inflammatory diseases: Miniperspective. J Med Chem 2014;57(12):5023-38. [DOI:10.1021/jm401490p] [PMID]
39. Radtke S, Haan S, Jörissen A, Hermanns HM, Diefenbach S, Smyczek T, et al. The Jak1 SH2 Domain Does Not Fulfill a Classical SH2 Function in Jak/STATSignaling but Plays a Structural Role for Receptor Interaction andUp-regulation of Receptor SurfaceExpression. J Biol Chem 2005;280(27):25760-8. [DOI:10.1074/jbc.M500822200] [PMID]
40. Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, et al. Structure of the unphosphorylated STAT5a dimer. J Biol Chem 2005;280(49):40782-7. [DOI:10.1074/jbc.M507682200] [PMID]
41. Duncan SA, Zhong Z, Wen Z, Darnell Jr JE. STAT signaling is active during early mammalian development. Dev Dyn 1997;208(2):190-8. https://doi.org/10.1002/(SICI)1097-0177(199702)208:2<190::AID-AJA6>3.0.CO;2-D https://doi.org/10.1002/(SICI)1097-0177(199702)208:2<190::AID-AJA6>3.0.CO;2-D [DOI:10.1002/(SICI)1097-0177(199702)208:23.0.CO;2-D]
42. Horvath CM. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 2000;25(10):496-502. [DOI:10.1016/S0968-0004(00)01624-8] [PMID]
43. O'Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002;109(2):S121-S31. [DOI:10.1016/S0092-8674(02)00701-8] [PMID]
44. Gadina M, Le MT, Schwartz DM, Silvennoinen O, Nakayamada S, Yamaoka K, et al. Janus kinases to jakinibs: from basic insights to clinical practice. Rheumatology 2019;58(Supplement_1):i4-i16. [DOI:10.1093/rheumatology/key432] [PMID] []
45. Coskun M, Salem M, Pedersen J, Nielsen OHJPr. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res 2013;76:1-8. [DOI:10.1016/j.phrs.2013.06.007] [PMID]
46. Kaur M, Singh M, Silakari OJFmc. Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: designing, synthesis and biological evaluation. Future Med Chem 2017;9(11):1193-211. [DOI:10.4155/fmc-2017-0037] [PMID]
47. Gennery AR, Slatter MA, Grandin L, Taupin P, Cant AJ, Veys P, et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J Allergy Clin Immunol 2010;126(3):602-10. e11. [DOI:10.1016/j.jaci.2010.06.015] [PMID]
48. Kendall D, Dupuis J. In many and diverse ways: in honor of Jacques Dupuis: Orbis Books; 2003. [URL]
49. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence AJArom. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015;66:311-28. [DOI:10.1146/annurev-med-051113-024537] [PMID] []
50. Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SM, Valappil M, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A 2013;110(8):3053-8. [DOI:10.1073/pnas.1220098110] [PMID] []
51. Yamazaki Y, Yamada M, Kawai T, Morio T, Onodera M, Ueki M, et al. Two novel gain-of-function mutations of STAT1 responsible for chronic mucocutaneous candidiasis disease: impaired production of IL-17A and IL-22, and the presence of anti-IL-17F autoantibody. J Immunol 2014;193(10):4880-7. [DOI:10.4049/jimmunol.1401467] [PMID]
52. Tamaura M, Satoh-Takayama N, Tsumura M, Sasaki T, Goda S, Kageyama T, et al. Human gain-of-function STAT1 mutation disturbs IL-17 immunity in mice. Int Immunol 2020;32(4):259-72. [DOI:10.1093/intimm/dxz079] [PMID]
53. Bruns HA, Kaplan MH. The role of constitutively active Stat6 in leukemia and lymphoma. Critical reviews in oncology/hematology. Crit Rev Oncol Hematol 2006;57(3):245-53. [DOI:10.1016/j.critrevonc.2005.08.005] [PMID]
54. Kawasaki M, Fujishiro M, Yamaguchi A, Nozawa K, Kaneko H, Takasaki Y, et al. Possible role of the JAK/STAT pathways in the regulation of T cell-interferon related genes in systemic lupus erythematosus. Lupus 2011;20(12):1231-9. [DOI:10.1177/0961203311409963] [PMID]
55. Walker J, Ahern M, Coleman M, Weedon H, Papangelis V, Beroukas D, et al. Characterisation of a dendritic cell subset in synovial tissue which strongly expresses Jak/STAT transcription factors from patients with rheumatoid arthritis. Ann Rheum Dis 2007;66(8):992-9. [DOI:10.1136/ard.2006.060822] [PMID] []
56. Nakayamada S, Kubo S, Iwata S, Tanaka Y. Recent progress in JAK inhibitors for the treatment of rheumatoid arthritis. BioDrugs 2016;30(5):407-19. [DOI:10.1007/s40259-016-0190-5] [PMID]
57. Montealegre G, Reinhardt A, Brogan P, Berkun Y, Zlotogorski A, Brown D, et al. Preliminary response to Janus kinase inhibition with baricitinib in chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures (CANDLE). Pediatr Rheumatol 2015;13:1-2. [DOI:10.1186/1546-0096-13-S1-O31] []
58. Papp K, Menter M, Raman M, Disch D, Schlichting D, Gaich C, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate‐to‐severe psoriasis. Br J Dermatol 2016;174(6):1266-76. [DOI:10.1111/bjd.14403] [PMID]
59. Shi JG, Chen X, Lee F, Emm T, Scherle PA, Lo Y, et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J Clin Pharmacol 2014;54(12):1354-61. [DOI:10.1002/jcph.354] [PMID]
60. Keystone EC, Taylor PC, Drescher E, Schlichting DE, Beattie SD, Berclaz P-Y, et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Ann Rheum Dis 2015;74(2):333-40. [DOI:10.1136/annrheumdis-2014-206478] [PMID] []
61. Kremer J, Huizinga T, Chen L, Saifan C, Issa M, Witt S, et al. FRI0090 Analysis of neutrophils, lymphocytes, and platelets in pooled phase 2 and phase 3 studies of baricitinib for rheumatoid arthritis. BMJ Publishing Group Ltd; 2017. [DOI:10.1136/annrheumdis-2017-eular.1325]
62. Chaplin S. Baricitinib: a new oral treatment for rheumatoid arthritis. Prescriber 2017;28(6):44-6. [DOI:10.1002/psb.1612]
63. Genovese MC, Kremer JM, Kartman CE, Schlichting DE, Xie L, Carmack T, et al. Response to baricitinib based on prior biologic use in patients with refractory rheumatoid arthritis. Rheumatology 2018;57(5):900-8. [DOI:10.1093/rheumatology/kex489] [PMID] []
64. Genovese MC, Kremer J, Zamani O, Ludivico C, Krogulec M, Xie L, et al. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med 2016;374(13):1243-52. [DOI:10.1056/NEJMoa1507247] [PMID]
65. Fleischmann R, Schiff M, van der Heijde D, Ramos‐Remus C, Spindler A, Stanislav M, et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease‐modifying antirheumatic drug treatment. Arthritis Rheumatol 2017;69(3):506-517. [DOI:10.1002/art.39953] [PMID] []
66. Ren S, Bermejo I, Simpson E, Wong R, Scott DL, Young A, et al. Baricitinib for previously treated moderate or severe rheumatoid arthritis: an evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics 2018;36:769-78. [DOI:10.1007/s40273-018-0616-7] [PMID] []
67. Dougados M, van der Heijde D, Chen Y-C, Greenwald M, Drescher E, Liu J, et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann Rheum Dis 2017;76(1):88-95. [DOI:10.1136/annrheumdis-2016-210094] [PMID] []
68. Guttman-Yassky E, Silverberg JI, Nemoto O, Forman SB, Wilke A, Prescilla R, et al. Baricitinib in adult patients with moderate-to-severe atopic dermatitis: a phase 2 parallel, double-blinded, randomized placebo-controlled multiple-dose study. J Am Acad Dermatol 2019;80(4):913-21. e9. [DOI:10.1016/j.jaad.2018.01.018] [PMID]
69. Jabbari A, Dai Z, Xing L, Cerise JE, Ramot Y, Berkun Y, et al. Reversal of alopecia areata following treatment with the JAK1/2 inhibitor baricitinib. EBioMedicine 2015;2(4):351-5. [DOI:10.1016/j.ebiom.2015.02.015] [PMID] []
70. Vermeire S, Schreiber S, Petryka R, Kuehbacher T, Hebuterne X, Roblin X, et al. Clinical remission in patients with moderate-to-severe Crohn's disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 2017;389(10066):266-75. [DOI:10.1016/S0140-6736(16)32537-5] [PMID]
71. Namour F, Anderson K, Nelson C, Tasset C. Filgotinib: a clinical pharmacology review. Clin Pharmacokinet 2022;61(6):819-32. [DOI:10.1007/s40262-022-01129-y] [PMID] []
72. Namour F, Desrivot J, Van der Aa A, Harrison P, Tasset C, van't Klooster G. Clinical confirmation that the selective JAK1 inhibitor filgotinib (GLPG0634) has a low liability for drug-drug interactions. Drug Metab Lett 2016;10(1):38-48. [DOI:10.2174/1872312810666151223103353] [PMID]
73. Kavanaugh A, Kremer J, Ponce L, Cseuz R, Reshetko O, Stanislavchuk M, et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann Rheum Dis 2017;76(6):1009-19. [DOI:10.1136/annrheumdis-2016-210105] [PMID]
74. Genovese M, Westhovens R, Meuleners L, Van der Aa A, Harrison P, Tasset C, et al. Effect of filgotinib, a selective JAK 1 inhibitor, with and without methotrexate in patients with rheumatoid arthritis: patient-reported outcomes. Arthritis Res Ther 2018. 23;20(1):57. [DOI:10.1186/s13075-018-1541-z] [PMID] []
75. Westhovens R, Rigby WF, van der Heijde D, Ching DW, Stohl W, Kay J, et al. Filgotinib in combination with methotrexate or as monotherapy versus methotrexate monotherapy in patients with active rheumatoid arthritis and limited or no prior exposure to methotrexate: the phase 3, randomised controlled FINCH 3 trial. Ann Rheum Dis 2021;80(6):727-38. [DOI:10.1136/annrheumdis-2020-219213] [PMID] []
76. Li M, Li M, Qiao L, Wu C, Xu D, Zhao Y, et al. Role of JAK-STAT signaling pathway in pathogenesis and treatment of primary Sjögren's syndrome. Chin Med J 2023;136(19):2297-306. [DOI:10.1097/CM9.0000000000002539] [PMID] []
77. Angelini J, Talotta R, Roncato R, Fornasier G, Barbiero G, Dal Cin L, et al. JAK-Inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future. Biomolecules 2020;10(7):1002. [DOI:10.3390/biom10071002] [PMID] []
78. Mease P, Coates LC, Helliwell PS, Stanislavchuk M, Rychlewska-Hanczewska A, Dudek A, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet 2018;392(10162):2367-77. [DOI:10.1016/S0140-6736(18)32483-8] [PMID]
79. Pohlmeyer C, Cui Z-H, Han P, Clarke A, Jones R, Mollova N, et al. AB0484 Monotherapy with filgotinib, a jak1-selective inhibitor, reduces disease severity and alters immune cell subsets in the nzb/w f1 murine model of lupus. BMJ Publishing Group Ltd; 2018. [DOI:10.1136/annrheumdis-2018-eular.3367]
80. Mohamed MEF, Zeng J, Marroum PJ, Song IH, Othman AA. Pharmacokinetics of upadacitinib with the clinical regimens of the extended‐release formulation utilized in rheumatoid arthritis phase 3 trials. Clin Pharmacol Drug Dev 2019;8(2):208-16. [DOI:10.1002/cpdd.462] [PMID] []
81. Klünder B, Mohamed M-EF, Othman AA. Population pharmacokinetics of upadacitinib in healthy subjects and subjects with rheumatoid arthritis: analyses of phase I and II clinical trials. Clin Pharmacokinet 2018;57:977-88. [DOI:10.1007/s40262-017-0605-6] [PMID] []
82. Burmester GR, Kremer JM, Van den Bosch F, Kivitz A, Bessette L, Li Y, et al. Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2018;391(10139):2503-12. [DOI:10.1016/S0140-6736(18)31115-2] [PMID]
83. Smolen J, Cohen S, Emery P, Rigby W, Tanaka Y, Zhang Y, et al. OP0035 Upadacitinib as monotherapy: a phase 3 randomised controlled double-blind study in patients with active rheumatoid arthritis and inadequate response to methotrexate. BMJ Publishing Group Ltd; 2018. [DOI:10.1136/annrheumdis-2018-eular.4237]
84. Strand V, Schiff M, Tundia N, Friedman A, Meerwein S, Pangan A, et al. Effects of upadacitinib on patient-reported outcomes: results from SELECT-BEYOND, a phase 3 randomized trial in patients with rheumatoid arthritis and inadequate responses to biologic disease-modifying antirheumatic drugs. Arthritis Res Ther 201921(1):263. [Google Scholar]
85. Kameda H, Takeuchi T, Yamaoka K, Oribe M, Kawano M, Zhou Y, et al. Efficacy and safety of upadacitinib in Japanese patients with rheumatoid arthritis (SELECT-SUNRISE): a placebo-controlled phase IIb/III study. Rheumatology 2020;59(11):3303-13. [DOI:10.1093/rheumatology/keaa084] [PMID] []
86. Panes J, Sandborn W, Loftus Jr E, Van Assche G, Ghosh S, Zhou Q, et al. P273 Efficacy and safety of upadacitinib maintenance treatment for moderate to severe Crohn's disease: Results from the CELEST study. J Crohns Colitis 2018;12(supplement_1):S238-S9. [DOI:10.1093/ecco-jcc/jjx180.400]
87. Farmer LJ, Ledeboer MW, Hoock T, Arnost MJ, Bethiel RS, Bennani YL, et al. Discovery of VX-509 (decernotinib): a potent and selective Janus kinase 3 inhibitor for the treatment of autoimmune diseases. J Med Chem 2015;58(18):7195-216. [DOI:10.1021/acs.jmedchem.5b00301] [PMID]
88. Mahajan S, Hogan JK, Shlyakhter D, Oh L, Salituro FG, Farmer L, et al. VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune disease. J Pharmacol Exp Ther 2015;353(2):405-14. [DOI:10.1124/jpet.114.221176] [PMID]
89. Genovese MC, Yang F, Østergaard M, Kinnman N. Efficacy of VX-509 (decernotinib) in combination with a disease-modifying antirheumatic drug in patients with rheumatoid arthritis: clinical and MRI findings. Ann Rheum Dis 2016;75(11):1979-83. [DOI:10.1136/annrheumdis-2015-208901] [PMID]
90. Zhu T, Howieson C, Wojtkowski T, Garg JP, Han D, Fisniku O, et al. The effect of verapamil, a P‐glycoprotein inhibitor, on the pharmacokinetics of peficitinib, an orally administered, once‐daily JAK inhibitor. Clin Pharmacol Drug Dev 2017;6(6):548-55. [DOI:10.1002/cpdd.344] [PMID]
91. Cao YJ, Sawamoto T, Valluri U, Cho K, Lewand M, Swan S, et al. Pharmacokinetics, pharmacodynamics, and safety of ASP015K (peficitinib), a new Janus kinase inhibitor, in healthy subjects. Clin Pharmacol Drug Dev 2016;5(6):435-49. [DOI:10.1002/cpdd.273] [PMID]
92. Ito M, Yamazaki S, Yamagami K, Kuno M, Morita Y, Okuma K, et al. A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a rat adjuvant-induced arthritis model. J Pharmacol Sci 2017;133(1):25-33. [DOI:10.1016/j.jphs.2016.12.001] [PMID]
93. Diller M, Hülser M-L, Hasseli R, Rehart S, Müller-Ladner U, Neumann E. AB0492 Jak-inhibition with peficitinib and filgotinib in fibroblast-like synoviocytes in rheumatoid arthritis. BMJ Publishing Group Ltd; 2018. [DOI:10.1136/annrheumdis-2018-eular.2182]
94. D'Amico F, Fiorino G, Furfaro F, Allocca M, Danese S. Janus kinase inhibitors for the treatment of inflammatory bowel diseases: developments from phase I and phase II clinical trials. Expert Opin Investig Drugs 2018;27(7):595-9. [DOI:10.1080/13543784.2018.1492547] [PMID]
95. Sands BE, Sandborn WJ, Feagan BG, Lichtenstein GR, Zhang H, Strauss R, et al. Peficitinib, an oral Janus kinase inhibitor, in moderate-to-severe ulcerative colitis: results from a randomised, phase 2 study. J Crohns Colitis 2018;12(10):1158-69. [DOI:10.1093/ecco-jcc/jjy085] [PMID]
96. Hosseini A, Gharibi T, Marofi F, Javadian M, Babaloo Z, Baradaran B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol 2020;235(9):5903-24. [DOI:10.1002/jcp.29593] [PMID]
97. Bissonnette R, Luchi M, Fidelus-Gort R, Jackson S, Zhang H, Flores R, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of the safety and efficacy of INCB039110, an oral janus kinase 1 inhibitor, in patients with stable, chronic plaque psoriasis. J Dermatolog Treat 2016;27(4):332-8. [DOI:10.3109/09546634.2015.1115819] [PMID]
98. Mascarenhas J, I Mughal T, Verstovsek S. Biology and clinical management of myeloproliferative neoplasms and development of the JAK inhibitor ruxolitinib. Curr Med Chem 2012;19(26):4399-413. [DOI:10.2174/092986712803251511] [PMID] []
99. Craiglow BG, Tavares D, King BA. Topical ruxolitinib for the treatment of alopecia universalis. JAMA Dermatol 2016;152(4):490-1. [DOI:10.1001/jamadermatol.2015.4445] [PMID]
100. Rothstein B, Joshipura D, Saraiya A, Abdat R, Ashkar H, Turkowski Y, et al. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J Am Acad Dermatol 2017;76(6):1054-60. e1. [DOI:10.1016/j.jaad.2017.02.049] [PMID]
101. Alves de Medeiros AK, Speeckaert R, Desmet E, Van Gele M, De Schepper S, Lambert J. JAK3 as an emerging target for topical treatment of inflammatory skin diseases. PLoS One 2016;11(10):e0164080. [DOI:10.1371/journal.pone.0164080] [PMID] []
102. Ports W, Khan S, Lan S, Lamba M, Bolduc C, Bissonnette R, et al. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br J Dermatol 2013;169(1):137-45. [DOI:10.1111/bjd.12266] [PMID] []
103. Rafael A, Torres T. Topical therapy for psoriasis: a promising future. Focus on JAK and phosphodiesterase-4 inhibitors. Eur J Dermatol 2016;26:3-8. [DOI:10.1684/ejd.2015.2663] [PMID]
104. Fukuyama T, Ehling S, Cook E, Bäumer W. Topically administered Janus-kinase inhibitors tofacitinib and oclacitinib display impressive antipruritic and anti-inflammatory responses in a model of allergic dermatitis. J Pharmacol Exp Ther 2015;354(3):394-405. [DOI:10.1124/jpet.115.223784] [PMID]
105. Bissonnette R, Papp K, Poulin Y, Gooderham M, Raman M, Mallbris L, et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol 2016;175(5):902-11. [DOI:10.1111/bjd.14871] [PMID]
106. Meephansan J, Thummakriengkrai J, Ponnikorn S, Yingmema W, Deenonpoe R, Suchonwanit P. Efficacy of topical tofacitinib in promoting hair growth in non-scarring alopecia: possible mechanism via VEGF induction. Arch Dermatol Res 2017;309:729-38. [DOI:10.1007/s00403-017-1777-5] [PMID]
107. Verstovsek S, Foltz L, Gupta V, Hasserjian R, Manshouri T, Mascarenhas J, et al. Safety and efficacy of zinpentraxin alfa as monotherapy or in combination with ruxolitinib in myelofibrosis: stage I of a phase II trial. Haematologica 2023;108(10):2730. [DOI:10.3324/haematol.2022.282411] [PMID] []
108. Elloso MM, Gomez-Angelats M, Fourie AM. Targeting the Th17 pathway in psoriasis. J Leukoc Biol 2012;92(6):1187-97. [DOI:10.1189/jlb.0212101] [PMID]
109. Hsu L, Armstrong AW. JAK inhibitors: treatment efficacy and safety profile in patients with psoriasis. J Immunol Res 2014;2014. [DOI:10.1155/2014/283617] [PMID] []
110. Mackay-Wiggan J, Jabbari A, Nguyen N, Cerise JE, Clark C, Ulerio G, et al. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight 2016;1(15). [DOI:10.1172/jci.insight.89790] [PMID] []
111. Hornung T, Janzen V, Heidgen F-J, Wolf D, Bieber T, Wenzel J. Remission of recalcitrant dermatomyositis treated with ruxolitinib. N Engl J Med 2014;371(26):2537-8. [DOI:10.1056/NEJMc1412997] [PMID]
112. Wenzel J, van Holt N, Maier J, Vonnahme M, Bieber T, Wolf D. JAK1/2 inhibitor ruxolitinib controls a case of chilblain lupus erythematosus. J Invest Dermatol 2016;136(6):1281-3. [DOI:10.1016/j.jid.2016.02.015] [PMID]
113. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 2017;77:521-46. [DOI:10.1007/s40265-017-0701-9] [PMID] []
114. Putterman E, Castelo-Soccio L. Topical 2% tofacitinib for children with alopecia areata, alopecia totalis, and alopecia universalis. J Am Acad Dermatol 2018;78(6):1207-9. e1. [DOI:10.1016/j.jaad.2018.02.031] [PMID]
115. Dowty ME, Lin J, Ryder TF, Wang W, Walker GS, Vaz A, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab Dispos 2014;42(4):759-73. [DOI:10.1124/dmd.113.054940] [PMID]
116. Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 2012;367(6):495-507. [DOI:10.1056/NEJMoa1109071] [PMID]
117. Kawalec P, Mikrut A, Wiśniewska N, Pilc A. The effectiveness of tofacitinib, a novel Janus kinase inhibitor, in the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol 2013;32:1415-24. [DOI:10.1007/s10067-013-2329-9] [PMID] []
118. Zerbini CA, Lomonte ABV. Tofacitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol 2012;8(4):319-31. [DOI:10.1586/eci.12.19] [PMID]
119. Curtis JR, Lee EB, Kaplan IV, Kwok K, Geier J, Benda B, et al. Tofacitinib, an oral Janus kinase inhibitor: analysis of malignancies across the rheumatoid arthritis clinical development programme. Ann Rheum Dis 2016;75(5):831-41. [DOI:10.1136/annrheumdis-2014-205847] [PMID] []
120. Wollenhaupt J, Silverfield J, Lee EB, Curtis JR, Wood SP, Soma K, et al. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J Rheumatol 2014;41(5):837-52. [DOI:10.3899/jrheum.130683] [PMID]
121. Cohen SB, Tanaka Y, Mariette X, Curtis JR, Lee EB, Nash P, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis 2017;76(7):1253-62. [DOI:10.1136/annrheumdis-2016-210457] [PMID] []
122. Winthrop KL, Curtis JR, Lindsey S, Tanaka Y, Yamaoka K, Valdez H, et al. Herpes zoster and tofacitinib: clinical outcomes and the risk of concomitant therapy. Arthritis Rheumatol 2017;69(10):1960-1968. [DOI:10.1002/art.40189] [PMID] []
123. Burmester GR, Blanco R, Charles-Schoeman C, Wollenhaupt J, Zerbini C, Benda B, et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 2013;381(9865):451-60. [DOI:10.1016/S0140-6736(12)61424-X] [PMID]
124. Charles-Schoeman C, Burmester G, Nash P, Zerbini CA, Soma K, Kwok K, et al. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological disease-modifying antirheumatic drugs. Ann Rheum Dis 2016;75(7):1293-301. [DOI:10.1136/annrheumdis-2014-207178] [PMID] []
125. Conaghan PG, Østergaard M, Bowes MA, Wu C, Fuerst T, van der Heijde D, et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann Rheum Dis 2016;75(6):1024-33. [DOI:10.1136/annrheumdis-2015-208267] [PMID] []
126. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol 2011;186(7):4234-43. [DOI:10.4049/jimmunol.1003668] [PMID] []
127. Kubo S, Yamaoka K, Kondo M, Yamagata K, Zhao J, Iwata S, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis 2014;73(12):2192-8. [DOI:10.1136/annrheumdis-2013-203756] [PMID]
128. Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis 2012;71(3):440-7. [DOI:10.1136/ard.2011.150284] [PMID]
129. Boyle D, Soma K, Hodge J, Kavanaugh A, Mandel D, Mease P, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis 2015;74(6):1311-6. [DOI:10.1136/annrheumdis-2014-206028] [PMID] []
130. Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez J-B, Dowty ME, et al. The mechanism of action of tofacitinib-an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 2016;34(2):318-28. [Google Scholar]
131. Wang S-P, Iwata S, Nakayamada S, Sakata K, Yamaoka K, Tanaka Y. Tofacitinib, a JAK inhibitor, inhibits human B cell activation in vitro. Ann Rheum Dis 2014;73(12):2213-5. [DOI:10.1136/annrheumdis-2014-205615] [PMID]
132. Papp K, Menter M, Abe M, Elewski B, Feldman S, Gottlieb A, et al. Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo‐controlled, phase III trials. Br J Dermatol 2015;173(4):949-61. [DOI:10.1111/bjd.14018] [PMID]
133. Boy MG, Wang C, Wilkinson BE, Chow VF-S, Clucas AT, Krueger JG, et al. Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J Invest Dermatol 2009;129(9):2299. [DOI:10.1038/jid.2009.25] [PMID]
134. Krueger J, Clark JD, Suárez-Fariñas M, Fuentes-Duculan J, Cueto I, Wang CQ, et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: a randomized phase 2 study. J Allergy Clin Immunol 2016;137(4):1079-1090. [DOI:10.1016/j.jaci.2015.12.1318] [PMID]
135. Mamolo C, Harness J, Tan H, Menter A. Tofacitinib (CP‐690,550), an oral Janus kinase inhibitor, improves patient‐reported outcomes in a phase 2b, randomized, double‐blind, placebo‐controlled study in patients with moderate‐to‐severe psoriasis. J Eur Acad Dermatol Venereol 2014;28(2):192-203. [DOI:10.1111/jdv.12081] [PMID]
136. Gratacos Masmitja J, Gonzalez Fernandez CM, Gomez Castro S, Rebollo Laserna FJ. Efficacy of tofacitinib in the treatment of psoriatic arthritis: a systematic review. Adv Ther 2021;38:868-84. [DOI:10.1007/s12325-020-01585-7] [PMID]
137. Gao W, McGarry T, Orr C, Veale D, Fearon U. SAT0031 Tofacitinib Regulates Synovial Inflammation in Psoriatic Arthritis, Inhibiting Stat Activation and Induction of Negative Feedback Inhibitors. BMJ Publishing Group Ltd; 2015. [DOI:10.1136/annrheumdis-2015-eular.1648]
138. Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology 2019;58(Supplement_1):i43-i54. [DOI:10.1093/rheumatology/key276] [PMID] []
139. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med 2017;377(16):1525-36. [DOI:10.1056/NEJMoa1615977] [PMID]
140. Mease PJ, Orbai A-M, FitzGerald O, Bedaiwi M, Fleishaker DL, Mundayat R, et al. Efficacy of tofacitinib on enthesitis in patients with active psoriatic arthritis: analysis of pooled data from two phase 3 studies. Arthritis Res Ther 2023;25(1):153. [DOI:10.1186/s13075-023-03108-5] [PMID] []
141. Liu LY, Craiglow BG, Dai F, King BA. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J Am Acad Dermatol 2017;76(1):22-8. [DOI:10.1016/j.jaad.2016.09.007] [PMID]
142. Van Der Heijde D, Deodhar A, Wei JC, Drescher E, Fleishaker D, Hendrikx T, et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis 2017;76(8):1340-7. [DOI:10.1136/annrheumdis-2016-210322] [PMID] []
143. Cosgrove SB, Wren JA, Cleaver DM, Martin DD, Walsh KF, Harfst JA, et al. Efficacy and safety of oclacitinib for the control of pruritus and associated skin lesions in dogs with canine allergic dermatitis. Vet Dermatol 2013;24(5):479-e114. [DOI:10.1111/vde.12047] [PMID] []
144. Collard W, Hummel B, Fielder A, King V, Boucher J, Mullins M, et al. The pharmacokinetics of oclacitinib maleate, a Janus kinase inhibitor, in the dog. J Vet Pharmacol Ther 2014;37(3):279-85. [DOI:10.1111/jvp.12087] [PMID]
145. Marsella R, Ahrens K. A pilot study on the effect of oclacitinib on epicutaneous sensitization and transepidermal water loss in a colony of atopic beagle dogs. Vet Dermatol 2018;29(5):439-e146. [DOI:10.1111/vde.12660] [PMID]
146. Aymeric E, Bensignor E. A case of presumed autoimmune subepidermal blistering dermatosis treated with oclacitinib. Vet Dermatol 2017;28(5):512-e123. [DOI:10.1111/vde.12458] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb