Volume 34, Issue 9 (December 2023)                   Studies in Medical Sciences 2023, 34(9): 499-508 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi H, Hatami Nemati H. INVESTIGATION THE POSSIBLE EFFECT OF INTRAPERITONEAL INJECTION OF CRACK-COCAINE AND METHAMPHETAMINE ON KIDNEY FUNCTION IN MALE WISTAR RATS.. Studies in Medical Sciences 2023; 34 (9) :499-508
URL: http://umj.umsu.ac.ir/article-1-6008-en.html
Assotiated Professor, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran (Corresponding Author) , h.hatami@tabrizu.ac.ir
Abstract:   (1241 Views)
Background & Aims: Crack is a solid salt processed with sodium bicarbonate from cocaine. Methamphetamine is a derivative of methylamphetamine, which is highly addictive. The current study aims to investigate the effect of intraperitoneal injection of crack cocaine and methamphetamin over the parameters of blood creatinine, urea, sodium, and potassium as indicators of kidney failure in male rats.
Materials and methods: This experimental study was carried out over seven groups of 6 male rats, including a control group, three crack-cocaine experimental groups, and three methamphetamine experimental groups, each of them receiving concentrations of 5, 10, and 15 mg/kg of crack-cocaine or methamphetamine respectively for 7 days (once a day). After the drug injection, blood was taken from the hearts of the rats and the parameters of urea, sodium, potassium, and creatinine were measured and analyzed from the blood samples taken. Statistical analysis of the data was done with the one-way analysis of variance and Tukey's post hoc test via SPSS.
Results: The injection of low and medium concentrations of two drugs, crack cocaine and methamphetamine, had no significant effect on the mentioned parameters (P > 0.05), and only the medium concentration of methamphetamine caused the amount of blood potassium to increase compared to the control group (P < 0.05). Injection of 15 mg/kg concentration of both drugs significantly increased the amount of blood creatinine in the respective groups (P < 0.05).
Conclusion: The increase in plasma creatinine due to the administration of methamphetamine and crack-cocaine may be caused by acute renal failure, rhabdomyolysis, or the induction of acute interstitial nephritis.

 
Full-Text [PDF 466 kb]   (577 Downloads)    
Type of Study: Research | Subject: فیزیولوژی

References
1. Kannan L. Renal manifestations of recreational drugs: A narrative review of the literature. Medicine 2022;101(50):1-12. [DOI:10.1097/MD.0000000000031888] [PMID] []
2. Hatami Nemati H, Ahmadi H, Almasi A, Hatami Nemati S. Effects of Vitamin C on the Spatial Memory and Lipid Peroxidation of Rat Hippocampus Poisoned with Crack Cocaine. Iranian J Nutr Sci Food Technol 2022;17(2):1-10. [Google Scholar]
3. Villatoro JA, Cruz S.L, Ortiz A, Medina-MoraM.E. Volatile Substance Misuse in Mexico: Correlates and Trends. Subst Use Misuse 2011;46 (1):40-45. [DOI:10.3109/10826084.2011.580205] [PMID]
4. Kariisa M, Scholl L, Wilson N, Seth P, Hoots B. Drug overdose deaths involving cocaine and psychostimulants with abuse potential - United States, 2003-2017. MMWR Morb Mortal Wkly Rep 2019;68(17):388-95. [DOI:10.15585/mmwr.mm6817a3] [PMID] []
5. Peces R, Navascués RA, Baltar J, Seco M, Alvarez J. Antiglomerular basement membrane antibody-mediated glomerulonephritis after intranasal cocaine use. Nephron 1999;81(4):434-8. [DOI:10.1159/000045328] [PMID]
6. Beth H. Key Substance Use and Mental Health Indicators in the United States: Results from the 2019 National Survey on Drug Use and Health. Rockville 2020. [URL]
7. Shahbazi R, Hatami Nemati H, Ahmadi H, Zogoulipour F. Nociceptive threshold response and alterations of special genes expression during methamphetamine administration and treatment with buprenorphine. J Bas Res Med Sci 2022;9(2):25-34. [Google Scholar]
8. Schep LJ, Slaughter RJ, Beasley DM. The clinical toxicology of metamfetamine. Clin Toxicol 2010;48(7):675-94. [DOI:10.3109/15563650.2010.516752] [PMID]
9. Nzerue CM, Hewan-Lowe K, Riley LJ Jr. Cocaine and the kidney: a synthesis of pathophysiologic and clinical perspectives. Am J Kidney Dis 2000;35(5):783-95. [DOI:10.1016/S0272-6386(00)70246-0] [PMID]
10. Baradhi KM, Pathireddy S, Bose S, Aeddula NR. Methamphetamine (N-methylamphetamine)-induced renal disease: underevaluated cause of end-stage renal disease (ESRD). BMJ Case Rep 2019;12(9):1-4. [DOI:10.1136/bcr-2019-230288] [PMID] []
11. Mansoor K, Kheetan M, Shahnawaz S, Shapiro A.P, Patton-Tackett E, Dial L, et al. Systematic review of nephrotoxicity of drugs of abuse, 2005-2016. BMC Nephrol 2017;18(1):379. [DOI:10.1186/s12882-017-0794-0] [PMID] []
12. Jaffe JA, Kimmel PL. Chronic nephropathies of cocaine and heroin abuse: a critical review. Clin J Am Soc Nephrol 2006;1(4):655-67. [DOI:10.2215/CJN.00300106] [PMID]
13. Goel N, Pullman JM, Coco M. Cocaine and kidney injury: a kaleidoscope of pathology. Clin Kidney J 2014;7(6):513-7. [DOI:10.1093/ckj/sfu092] [PMID] []
14. Borumand MR, Motaghinejad M, Motevalian M, Gholami M. Duloxetine by modulating the Akt/GSK3 signaling pathways has neuroprotective effects against methamphetamine-induced neurodegeneration and cognition impairment in rats. Iran J Med Sci 2019;44(2):146-54. [Google Scholar]
15. Calipari ES, Beveridge TJ.R, Jones SR, Porrino LJ. Withdrawal from extended-access cocaine self-administration results in dysregulated functional activity and altered locomotor activity in rats. Eur J Neurosci 2013;38(12):3749-57. [DOI:10.1111/ejn.12381] [PMID] []
16. Di Paolo N, Fineschi V, Di Paolo M, C V Wetly, G Garosi, M T Del Vecchio. Kidney vascular damage and cocaine. Clin Nephrol 1997;47(5):298-303. [Google Scholar]
17. Nikolova M, Milenova VI, Yosifov D, Vlahov Y. Tenev V. Renal changes in cocaine abuse and addiction. M. Sciendo 2019;46(2):57-61. [DOI:10.2478/amb-2019-0020]
18. Hojilla JC, Satre DD, Glidden DV, McMahan VM, Gandhi M, Defechereux P, et al. Brief Report: Cocaine Use and Pre-exposure Prophylaxis: Adherence, Care Engagement, and Kidney Function. J Acquir Immune Defic Syndr 2019;1;81(1):78-82. [DOI:10.1097/QAI.0000000000001972] [PMID] []
19. Bailey DN, Bessler JB, Sawrey BA. Cocaine- and Cocaethylene-Creatinine Clearance Ratios in Humans. J Anal Toxicol 1997;21(1):41-3. [DOI:10.1093/jat/21.1.41] [PMID]
20. Bemanian S, Motallebi M, Nosrati S.M. Cocaine-induced renal infarction: report of a case and review of the literature. BMC Nephrol 2005;6:10:1-6. [DOI:10.1186/1471-2369-6-10] [PMID] []
21. Riezzo I, Fiore C, De Carlo D, Pascale N, Turillazzi E, Fineschi V. Side Effects of Cocaine Abuse: Multiorgan Toxicity and Pathological Consequences. Curr Med Chem 2012;19(33):5624-46.2012;19(33):5624-46. [DOI:10.2174/092986712803988893] [PMID]
22. Kowalczyk-Pachel D, Iciek M, Wydra K, Nowak E, Górny M, Filip M, et al. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment. Plos One 2016;11(1):e0147238. [DOI:10.1371/journal.pone.0147238] [PMID] []
23. Yadav A, Mishra PC. Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form. J Mol Model 2013;19(2):767-77. [DOI:10.1007/s00894-012-1601-2] [PMID]
24. Pomara C, Cassano T, D'Errico S, Bello S, Romano A D, Riezzo I, et al. Data available on the extent of cocaine use and dependence: biochemistry, phar-macologic eff ects and global burden of disease of cocaine abusers. Cur Med Chem 2012;19(33):5647-57. [DOI:10.2174/092986712803988811] [PMID]
25. Albright G. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiol 1979;51(4):285-7. [DOI:10.1097/00000542-197910000-00001] [PMID]
26. Kovacic P. Role of oxidative metabolites of cocaine in toxicity and addition: oxidative stress and electron transfer. Med Hypoth 2005;64(2):350-6. [DOI:10.1016/j.mehy.2004.06.028] [PMID]
27. Aldeen M B, Talibmamury N, Alalusi S, Nadham O, Omer A R, Smalligan R D. When Coke is not hydrating: Cocaine-Induced Acute Interstitial Nephritis. J Investig Med High Impact Case Rep 2014;2(3):2324709614551557. [DOI:10.1177/2324709614551557] [PMID] []
28. Parks JM, Reed G, Knochel JP. Cocaine-associated rhabdomyolysis. Cocaine-associated rhabdomyolysis. Am J Med Sci 1989;297(5):334-6. [DOI:10.1097/00000441-198905000-00013] [PMID]
29. Luciano RL, Perazella MA. Nephrotoxic effect of designer drugs: synthetic is not better! Nat Rev Nephrol 2014;10(6):314-24. [DOI:10.1038/nrneph.2014.44] [PMID]
30. Schep LJ, Slaughter RJ, Beasley DM. The clinical toxicology of metamfetamine. Clin Toxicol 2010;48(7):675-94. [DOI:10.3109/15563650.2010.516752] [PMID]
31. Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 2012;82(5):516-24. [DOI:10.1038/ki.2012.208] [PMID]
32. Isoardi KZ, Ayles SF, Harris K, Finch CJ, Page CB. Methamphetamine presentations to an emergency department: management and complications. Emerg Med Australas 2019;31(4):593-9. [DOI:10.1111/1742-6723.13219] [PMID]
33. Yap M, Lamarche J, Peguero A, Courville C. Serum cystatin C versus serum creatinine in the estimation of glomerular filtration rate in rhabdomyolysis. J Ren Care 2011;37(3):155-7. [DOI:10.1111/j.1755-6686.2011.00228.x] [PMID]
34. Effiong C, Ahuja T S, Wagner JD, Singhal P C. Mattana J. Reversible hemiplegia as a consequence of severe hyperkalemia and cocaine abuse in a hemodialysis patient. Am J Med Sci 1997;314(6):408-10. [DOI:10.1016/S0002-9629(15)40254-X] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb