Volume 33, Issue 12 (March 2023)                   Studies in Medical Sciences 2023, 33(12): 839-856 | Back to browse issues page

Research code: 70270
Ethics code: IR.TBZMED.VCR.REC.1401.245


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rezaie A, Mehdipour A, Salmanipour S, Alipour N, Salehi R. HIGHLY POROUS ALGINATE/GELATIN SPONGE FOR HEMOSTASIS OF SEVERE FEMORAL BLEEDING IN RATS. Studies in Medical Sciences 2023; 33 (12) :839-856
URL: http://umj.umsu.ac.ir/article-1-5968-en.html
Associate Professor, Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran (Corresponding Author) , roya.salehi@gmail.com
Abstract:   (1675 Views)
Background & Aims: Controlling significant bleeding caused by accidents or battlefields is one of the main issues with emergency injuries. The current research was designed with the aim of investigating the binding performance of alginate, gelatin and alginate-gelatin superabsorbents in order to solve the aforementioned challenges.
Materials & Methods: In this experimental study, superabsorbents were prepared through crosslinking with calcium chloride and then freeze-drying. Physical properties of the synthesized superabsorbents were evaluated using FE-SEM analysis as well as porosity percentage and swelling ratio tests. Cell compatibility of superabsorbents was assessed using the MTT assay. Hemolysis, Blood Coagulation Index (BCI), RBC attachment, and platelet adhesion tests were utilized to evaluate the in vitro hemolytic activity of superabsorbents. Further, in vivo femoral artery surgery studies on rats were performed to investigate the hemostatic efficiency of the synthesized superabsorbents.
Results: In vitro hemostatic ability results verified that synthetic sponges have better hemostatic properties than commercial ones. The results of cytotoxicity test revealed that alginate, gelatin, and alginate-gelatin superabsorbents are fully non-toxic, and h due to having a survival percentage more than 89%, they have significant cellular compatibility. Finally, in vivo hemostatic tests showed that the synthesized superabsorbents performed better than commercial samples in terms of bleeding control and decreasing coagulation time, as the amount of blood loss and coagulation time for optimum alginate-gelatin superabsorbent decreased respectively by 1.71 and 1.96 times compared to ChitoCell and 1.37 and 1.55 times compared to Gelita.
Conclusion: According to the results of the current study, the optimum alginate-gelatin superabsorbent has substantial in vitro and in vivo hemostatic efficacy. These results show the potential of this superabsorbent to enter the stage of clinical studies.

Full-Text [PDF 1470 kb]   (983 Downloads)    
Type of Study: Research | Subject: General

References
1. Yang X, Liu W, Li N, Wang M, Liang B, Ullah I, et al. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci 2017;5(12):2357-68. [DOI:10.1039/C7BM00554G] [PMID]
2. Zhao X, Guo B, Wu H, Liang Y, Ma PX. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Comuun 2018;9(1):2784. [DOI:10.1038/s41467-018-04998-9] [PMID] [PMCID]
3. Leonhardt EE, Kang N, Hamad MA, Wooley KL, Elsabahy M. Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan. Nat Commun 2019;10(1):1-9. [DOI:10.1038/s41467-019-10290-1] [PMID] [PMCID]
4. Chen S, Carlson MA, Zhang YS, Hu Y, Xie J. Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanuts") and their potential applications in hemostasis. Biomater 2018;179:46-59. [DOI:10.1016/j.biomaterials.2018.06.031] [PMID] [PMCID]
5. Chan LW, Wang X, Wei H, Pozzo LD, White NJ, Pun SH. A synthetic fibrin cross-linking polymer for modulating clot properties and inducing hemostasis. Sci Transl Med 2015;7(277):277ra29-ra29. [DOI:10.1126/scitranslmed.3010383]
6. Laali KK, Greves WJ, Correa-Smits SJ, Zwarycz AT, Bunge SD, Borosky GL, et al. Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: Synthesis, structural studies, Computational/Docking and in-vitro bioassay. J Fluor Chem 2018;206:82-98. [DOI:10.1016/j.jfluchem.2017.11.013]
7. Hou Y, Xia Y, Pan Y, Tang S, Sun X, Xie Y, et al. Influences of mesoporous zinc-calcium silicate on water absorption, degradability, antibacterial efficacy, hemostatic performances and cell viability to microporous starch based hemostat. Mater Sci Eng C 2017;76:340-9. [DOI:10.1016/j.msec.2017.03.094] [PMID]
8. Streifel BC, Lundin JG, Sanders AM, Gold KA, Wilems TS, Williams SJ, et al. Hemostatic and absorbent PolyHIPE-kaolin composites for 3D printable wound dressing materials. Macromol Biosci 2018;18(5):1700414. [DOI:10.1002/mabi.201700414] [PMID]
9. Taaca KLM, Vasquez Jr MR. Hemocompatibility and cytocompatibility of pristine and plasma-treated silver-zeolite-chitosan composites. Appl Surf Sci 2018;432:324-31. [DOI:10.1016/j.apsusc.2017.04.034]
10. Yu L, Shang X, Chen H, Xiao L, Zhu Y, Fan J. A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat Commun 2019;10(1):1932. [DOI:10.1038/s41467-019-09849-9] [PMID] [PMCID]
11. Maia J, Evangelista MB, Gil H, Ferreira L. Dextran-based materials for biomedical applications. Res Signpost 2014;37661:31-53. [Google Scholar]
12. Liao N, Unnithan AR, Joshi MK, Tiwari AP, Hong ST, Park C-H, et al. Electrospun bioactive poly (ɛ-caprolactone)-cellulose acetate-dextran antibacterial composite mats for wound dressing applications. Colloids Surf A Physicochem Eng Asp 2015;469:194-201. [DOI:10.1016/j.colsurfa.2015.01.022]
13. Lih E, Lee JS, Park KM, Park KD. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater 2012;8(9):3261-9. [DOI:10.1016/j.actbio.2012.05.001] [PMID]
14. Li L, Du Y, Yin Z, Li L, Peng H, Zheng H, et al. Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo. Colloids Surf B 2020;187:110641. [DOI:10.1016/j.colsurfb.2019.110641] [PMID]
15. Zhou J, Wang C, Cunningham AJ, Hu Z, Xiang H, Sun B, et al. Synthesis and characterization of size-controlled nano-Cu2O deposited on alpha-zirconium phosphate with excellent antibacterial property. Mater Sci Eng C 2019;101:499-504. [DOI:10.1016/j.msec.2019.04.008] [PMID]
16. Ghorbani FM, Kaffashi B, Shokrollahi P, Seyedjafari E, Ardeshirylajimi A. PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr Polym 2015;118:133-42. [DOI:10.1016/j.carbpol.2014.10.071] [PMID]
17. Luo JW, Liu C, Wu JH, Zhao DH, Lin LX, Fan HM, et al. In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis. J Biomed Mater Res B Appl Biomater 2020;108(3):790-7. [DOI:10.1002/jbm.b.34433] [PMID]
18. Xie X, Li D, Chen Y, Shen Y, Yu F, Wang W, et al. Conjugate electrospun 3D gelatin nanofiber sponge for rapid hemostasis. Adv Healthc Mater 2021;10(20):2100918. https://doi.org/10.1002/adhm.202100918 [DOI:10.1002/adhm.202170095] [PMID]
19. Li G, Che M-T, Zhang K, Qin L-N, Zhang Y-T, Chen R-Q, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomater 2016;83:233-48. [DOI:10.1016/j.biomaterials.2015.11.059] [PMID]
20. Lan G, Lu B, Wang T, Wang L, Chen J, Yu K, et al. Chitosan/gelatin composite sponge is an absorbable surgical hemostatic agent. Colloids Surf B 2015;136:1026-34. [DOI:10.1016/j.colsurfb.2015.10.039] [PMID]
21. Wang C, Luo W, Li P, Li S, Yang Z, Hu Z, et al. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydr Polym 2017;174:432-42. [DOI:10.1016/j.carbpol.2017.06.112] [PMID]
22. Xu G, Cheng L, Zhang Q, Sun Y, Chen C, Xu H, et al. In situ thiolated alginate hydrogel: instant formation and its application in hemostasis. J Biomater Appl 2016;31(5):721-9. [DOI:10.1177/0885328216661557] [PMID]
23. Jin J, Ji Z, Xu M, Liu C, Ye X, Zhang W, et al. Microspheres of carboxymethyl chitosan, sodium alginate, and collagen as a hemostatic agent in vivo. ACS Biomater Sci Eng 2018;4(7):2541-51. [DOI:10.1021/acsbiomaterials.8b00453] [PMID]
24. Vueva Y, Connell LS, Chayanun S, Wang D, McPhail DS, Romer F, et al. Silica/alginate hybrid biomaterials and assessment of their covalent coupling. Appl Mater Today 2018;11:1-12. [DOI:10.1016/j.apmt.2017.12.011]
25. Shi X, Fang Q, Ding M, Wu J, Ye F, Lv Z, et al. Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J. Biomater Appl 2016;30(7):1092-102. [DOI:10.1177/0885328215618354] [PMID]
26. Rong J-j, Liang M, Xuan F-q, Sun J-y, Zhao L-j, Zheng H-z, et al. Thrombin-loaded alginate-calcium microspheres: A novel hemostatic embolic material for transcatheter arterial embolization. Int J Biol Macromol 2017;104:1302-12. [DOI:10.1016/j.ijbiomac.2017.03.020] [PMID]
27. Jeon O, Alt DS, Ahmed SM, Alsberg E. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomater 2012;33(13):3503-14. [DOI:10.1016/j.biomaterials.2012.01.041] [PMID] [PMCID]
28. Fathi P, Sikorski M, Christodoulides K, Langan K, Choi YS, Titcomb M, et al. Zeolite‐loaded alginate‐chitosan hydrogel beads as a topical hemostat. J Biomed Mater Res B Appl Biomater 2018;106(5):1662-71. [DOI:10.1002/jbm.b.33969] [PMID] [PMCID]
29. Björses K, Faxälv L, Montan C, Wildt-Persson K, Fyhr P, Holst J, et al. In vitro and in vivo evaluation of chemically modified degradable starch microspheres for topical haemostasis. Acta Biomater 2011;7(6):2558-65. [DOI:10.1016/j.actbio.2011.03.003] [PMID]
30. Sinha R, Lockman KA, Church NI, Plevris JN, Hayes PC. The use of hemostatic spray as an adjunct to conventional hemostatic measures in high-risk nonvariceal upper GI bleeding (with video). Gastrointest Endosc 2016;84(6):900-6. e3. [DOI:10.1016/j.gie.2016.04.016] [PMID]
31. Holster IL, van Beusekom HM, Kuipers EJ, Leebeek FW, de Maat MP, Tjwa ET. Effects of a hemostatic powder hemospray on coagulation and clot formation. Endoscopy 2015;47(07):638-45. [DOI:10.1055/s-0034-1391353] [PMID]
32. Chen Z, Han L, Liu C, Du Y, Hu X, Du G, et al. A rapid hemostatic sponge based on large, mesoporous silica nanoparticles and N-alkylated chitosan. Nanoscale 2018;10(43):20234-45. [DOI:10.1039/C8NR07865C] [PMID]
33. de Nucci G, Reati R, Arena I, Bezzio C, Devani M, Della Corte C, et al. Efficacy of a novel self-assembling peptide hemostatic gel as rescue therapy for refractory acute gastrointestinal bleeding. Endoscopy 2020;52(09):773-9. [DOI:10.1055/a-1145-3412] [PMID]
34. Ellis-Behnke RG, Liang Y-X, Tay DK, Kau PW, Schneider GE, Zhang S, et al. Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomed Nanotechnol Biol Med 2006;2(4):207-15. [DOI:10.1016/j.nano.2006.08.001] [PMID]
35. Zietlow JM, Zietlow SP, Morris DS, Berns KS, Jenkins DH. Prehospital use of hemostatic bandages and tourniquets: translation from military experience to implementation in civilian trauma care. J Spec Oper Med 2015;15(2):48-53. [DOI:10.55460/1P70-3H9D] [PMID]
36. Yang X, Wang C, Liu Y, Niu H, Zhao W, Wang J, et al. Inherent antibacterial and instant swelling ε-poly-lysine/poly (ethylene glycol) diglycidyl ether superabsorbent for rapid hemostasis and bacterially infected wound healing. ACS Appl Mater Interfaces 2021;13(31):36709-21. [DOI:10.1021/acsami.1c02421] [PMID]
37. Mirzakhanian Z, Faghihi K, Barati A, Momeni HR. Synthesis and characterization of fast-swelling porous superabsorbent hydrogel based on starch as a hemostatic agent. J Biomater Sci Polym Ed 2015;26(18):1439-51. [DOI:10.1080/09205063.2015.1100496] [PMID]
38. Chen Y, Zhang Y, Wang F, Meng W, Yang X, Li P, et al. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. Mater Sci Eng C 2016;63:18-29. [DOI:10.1016/j.msec.2016.02.048] [PMID]
39. Shefa AA, Taz M, Hossain M, Kim YS, Lee SY, Lee B-T. Investigation of efficiency of a novel, zinc oxide loaded TEMPO-oxidized cellulose nanofiber based hemostat for topical bleeding. Int J Biol Macromol 2019;126:786-95. [DOI:10.1016/j.ijbiomac.2018.12.079] [PMID]
40. Mahmoodzadeh A, Moghaddas J, Jarolmasjed S, Kalan AE, Edalati M, Salehi R. Biodegradable cellulose-based superabsorbent as potent hemostatic agent. J Chem Eng 2021;418:129252. [DOI:10.1016/j.cej.2021.129252]
41. Fan X, Chen K, He X, Li N, Huang J, Tang K, et al. Nano-TiO2/collagen-chitosan porous scaffold for wound repairing. Int J Biol Macromol 2016;91:15-22. [DOI:10.1016/j.ijbiomac.2016.05.094] [PMID]
42. Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, et al. Novel superabsorbent cellulose‐based hydrogels crosslinked with citric acid. J Appl Polym Sci 2008;110(4):2453-60. [DOI:10.1002/app.28660]
43. Xi G, Liu W, Chen M, Li Q, Hao X, Wang M, et al. Polysaccharide-based lotus seedpod surface-like porous microsphere with precise and controllable micromorphology for ultrarapid hemostasis. ACS Appl Mater Interfaces 2019;11(50):46558-71. [DOI:10.1021/acsami.9b17543] [PMID]
44. Li P, Cao L, Sang F, Zhang B, Meng Z, Pan L, et al. Polyvinyl alcohol/sodium alginate composite sponge with 3D ordered/disordered porous structure for rapidly controlling noncompressible hemorrhage. Biomater Adv 2022;134:112698. [DOI:10.1016/j.msec.2022.112698] [PMID]
45. Wang C, Niu H, Ma X, Hong H, Yuan Y, Liu C. Bioinspired, injectable, quaternized hydroxyethyl cellulose composite hydrogel coordinated by mesocellular silica foam for rapid, noncompressible hemostasis and wound healing. ACS Appl Mater Interfaces 2019;11(38):34595-608. [DOI:10.1021/acsami.9b08799] [PMID]
46. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg 2014;7(4):189. [DOI:10.4103/0974-2077.150734] [PMID] [PMCID]
47. Kabiri M, Emami SH, Rafinia M, Tahriri M. Preparation and characterization of absorbable hemostat crosslinked gelatin sponges for surgical applications. Curr Appl Phys 2011;11(3):457-61. [DOI:10.1016/j.cap.2010.08.031]
48. Zheng C, Zeng Q, Pimpi S, Wu W, Han K, Dong K, et al. Research status and development potential of composite hemostatic materials. J Mater Chem B 2020;8(25):5395-410. [DOI:10.1039/D0TB00906G] [PMID]
49. Wu B, Du F, Wenjing A, Liu F, Liu Y, Zheng W, et al. Graphene-ophicalcite heterogeneous composite sponge for rapid hemostasis. Colloids Surf B 2022;216:112596. [DOI:10.1016/j.colsurfb.2022.112596] [PMID]
50. Zhao Y, Li J, Leng F, Lv S, Huang W, Sun W, et al. Degradable porous carboxymethyl chitin hemostatic microspheres. J Biomater Sci Polym Ed 2020;31(11):1369-84. [DOI:10.1080/09205063.2020.1760461] [PMID]
51. Liu J-Y, Li Y, Hu Y, Cheng G, Ye E, Shen C, et al. Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process. Mater Sci Eng C 2018;83:160-8. [DOI:10.1016/j.msec.2017.10.007] [PMID]
52. Wang L, Pan K, Zhang L, Zhou C, Li Y, Zhu B, et al. Tentative identification of key factors determining the hemostatic efficiency of diatom frustule. Biomater Sci 2021;9(6):2162-73. [DOI:10.1039/D0BM02002H] [PMID]
53. Yang X, Zhou J, Huo T, Lv Y, Pan J, Chen L, et al. Metabolic insights into the enhanced nitrogen removal of anammox by montmorillonite at reduced temperature. Chem Eng J 2021;410:128290. [DOI:10.1016/j.cej.2020.128290]
54. Li N, Yang X, Liu W, Xi G, Wang M, Liang B, et al. Tannic acid cross‐linked polysaccharide‐based multifunctional hemostatic microparticles for the regulation of rapid wound healing. Macromol Biosci 2018;18(11):1800209. [DOI:10.1002/mabi.201800209] [PMID]
55. De Candia E. Mechanisms of platelet activation by thrombin: a short history. Thromb Res 2012;129(3):250-6. [DOI:10.1016/j.thromres.2011.11.001] [PMID]
56. Liu Z, Li N, Gao W, Man S, Yin S, Liu C. Comparative study on hemostatic, cytotoxic and hemolytic activities of different species of Paris L. J Ethnopharmacol 2012;142(3):789-94. [DOI:10.1016/j.jep.2012.05.065] [PMID]
57. Biazar E, Keshel SH, Niazi V, Shiran NV, Saljooghi R, Jarrahi M, et al. Morphological, cytotoxicity, and coagulation assessments of perlite as a new hemostatic. RSC Adv 2023;13(9):6171-80. [DOI:10.1039/D2RA07795G] [PMID] [PMCID]
58. Yao X-p, Jing M-l, Guan J. Hemostatic property and cytotoxicity of the guanidine modified chitosan. Chin J Tissue Eng Res 2017;21(6):906. [Google Scholar]
59. Narvaez-Flores JJ, Vilar-Pineda G, Acosta-Torres LS, Garcia-Contreras R. Cytotoxic and anti-inflammatory effects of chitosan and hemostatic gelatin in oral cell culture. Acta Odontol Latinoam 2021;99:98-103. [DOI:10.54589/aol.34/2/098] [PMID]
60. Wang L, Zhong Y, Qian C, Yang D, Nie J, Ma G. A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomater 2020;114:193-205. [DOI:10.1016/j.actbio.2020.07.043] [PMID]
61. Li J, Sun X, Zhang K, Yang G, Mu Y, Su C, et al. Chitosan/Diatom‐Biosilica Aerogel with Controlled Porous Structure for Rapid Hemostasis. Adv Healthcare Mater 2020;9(21):2000951. [DOI:10.1002/adhm.202000951] [PMID]
62. Wang Y, Wang C, Qiao L, Feng J, Zheng Y, Chao Y, et al. Shape-adaptive composite foams with high expansion and absorption used for massive hemorrhage control and irregular wound treatment. Appl Mater Today 2018;13:228-41. [DOI:10.1016/j.apmt.2018.09.009]
63. Barrientos-Velázquez AL, Arteaga S, Dixon JB, Deng Y. The effects of pH, pepsin, exchange cation, and vitamins on aflatoxin adsorption on smectite in simulated gastric fluids. Appl Clay Sci 2016;120:17-23. [DOI:10.1016/j.clay.2015.11.014]
64. Behrens AM, Sikorski MJ, Kofinas P. Hemostatic strategies for traumatic and surgical bleeding. J Biomed Mater Res Part A 2014;102(11):4182-94. [DOI:10.1002/jbm.a.35052] [PMID] [PMCID]
65. Zhang Y, Guan J, Wu J, Ding S, Yang J, Zhang J, et al. N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations. Carbohydr Polym 2019;219:405-13. [DOI:10.1016/j.carbpol.2019.05.028] [PMID]
66. Wei X, Ding S, Liu S, Yang K, Cai J, Li F, et al. Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges. Carbohydr Polym 2021;264:118028. [DOI:10.1016/j.carbpol.2021.118028] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb