1. Fiorenza M, Gunnarsson T, Hostrup M, Iaia F, Schena F, Pilegaard H, et al. Metabolic stress‐dependent regulation of the mitochondrial biogenic molecular response to high‐intensity exercise in human skeletal muscle. J Physiol 2018;596(14):2823-40.
https://doi.org/10.1113/JP275972 [
DOI:10.1113/jp275972] [
PMID] [
PMCID]
2. MacInnis MJ, Gibala MJJTJop. Physiological adaptations to interval training and the role of exercise intensity. Physiol J 2017;595(9):2915-30.
https://doi.org/10.1113/JP273196 [
DOI:10.1113/jp273196] [
PMID] [
PMCID]
3. Brandt N, Dethlefsen MM, Bangsbo J, Pilegaard HJPo. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. PloS One 2017;21(10):e0185993. [
DOI:10.1371/journal.pone.0185993] [
PMID] [
PMCID]
4. Jafari M, Pouryamehr E, Fathi M. The effect of eight weeks high intensity interval training (HIIT) on E-selection and P-selection in young obese females. Int J Sport Stud Health 2018;1(1):e64336. [
DOI:10.5812/intjssh.64336]
5. Corona JC, Duchen MR. PPARγ and PGC-1α as therapeutic targets in Parkinson's. Neurochemical research. Neurochem Res 2015;40(2):308-16. [
DOI:10.1007/s11064-014-1377-0] [
PMID] [
PMCID]
6. Taylor EB, Lamb JD, Hurst RW, Chesser DG, Ellingson WJ, Greenwood LJ, et al. Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab 2005;289(6):E960-E8. [
DOI:10.1152/ajpendo.00237.2005] [
PMID]
7. Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N. PGC-1α and PGC-1β have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am J Physiol Endocrinol Metab 2006;291(4):E807-E16. [
DOI:10.1152/ajpendo.00591.2005] [
PMID]
8. Valle I, Álvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res 2005;66(3):562-73. [
DOI:10.1016/j.cardiores.2005.01.026] [
PMID]
9. Timmons JA, Norrbom J, Schéele C, Thonberg H, Wahlestedt C, Tesch P. Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes. Genomics 2006;87(1):165-72. [
DOI:10.1016/j.ygeno.2005.09.007] [
PMID]
10. Lira VA, Benton CR, Yan Z, Bonen A. PGC-1α regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 2010;299(2):E145-E61. [
DOI:10.1152/ajpendo.00755.2009] [
PMID] [
PMCID]
11. Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, et al. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2013;2(8):761-70. [
DOI:10.1242/bio.20134853] [
PMID] [
PMCID]
12. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 2006;46(1):113-40. [
DOI:10.1016/j.advenzreg.2006.01.007] [
PMID]
13. Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med 2015; (6)1. [
DOI:10.5812/asjsm.24898] [
PMID] [
PMCID]
14. Juel C. Lactate-proton cotransport in skeletal muscle. PhysiolRev 1997;77(2):321-58. [
DOI:10.1152/physrev.1997.77.2.321] [
PMID]
15. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Endocrinol Metab. 2004. [
DOI:10.1152/ajpregu.00114.2004] [
PMID]
16. Junior AHL, de Salles Painelli V, Saunders B, Artioli GG. Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. J Sports Med. 2015;45(1):71-81. [
DOI:10.1007/s40279-015-0397-5] [
PMID] [
PMCID]
17. Parry-Billings M, MacLaren D. The effect of sodium bicarbonate and sodium citrate ingestion on anaerobic power during intermittent exercise. Eur J Appl Physiol 1986;55(5):524-9.
https://doi.org/10.1007/BF00421648 [
DOI:10.1007/bf00421648] [
PMID]
18. Urwin CS, Snow RJ, Orellana L, Condo D, Wadley GD, Carr AJ. Sodium citrate ingestion protocol impacts induced alkalosis, gastrointestinal symptoms, and palatability. Physiol. Rep. 2019;7(19):e14216. [
DOI:10.14814/phy2.14216] [
PMID] [
PMCID]
19. Murase S, Sakitani N, Maekawa T, Yoshino D, Takano K, Konno A, Hirai H, Saito T, Tanaka S, Shinohara K, Kishi T. Interstitial-fluid shear stresses induced by vertically oscillating head motion lower blood pressure in hypertensive rats and humans. Nat. Biomed. Eng. 2023 Jul 6:1-24. [
DOI:10.1038/s41551-023-01061-x] [
PMID]
20. Alavi F, Seify F, Nabilpour M. Effect of 8 Weeks High Intensity Interval Training with Sodium Citrate Supplementation on PGC-1α and TFAM Expression. J. Complement. Med.2023;12(4):22-32. [
DOI:10.61186/cmja.12.4.22]
21. Nabilpour M, Sadegi A, hematiafif a, Faal Pakdeh M. The effect of two months of continuous exercise with chia (Salvia hispanica L.) supplement on the Internet-1 and 13 in Wistar diabetes rankings. Feyz. 2021;25(4):1047-54. [
Google Scholar]
22. Nabilpour M, Sadeghi A. Effect of Eight-Week Aerobic Moderate-Intensity Continuous Training on Il-1β and Il-13 Levels of Soleus Muscle Tissue in Male Diabetic Rats. IJDM 2021;21(3):129-38. [
Google Scholar]
23. Brookes PS, Yoon Y, Robotham JL, Anders M, Sheu S-SJAJoP-CP. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol., Cell Physiol. 2004;287(4):C817-C33. [
DOI:10.1152/ajpcell.00139.2004] [
PMID]
24. Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak ZJSM, et al. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Med. Health Sci. 2019;1(1):24-32. [
DOI:10.1016/j.smhs.2019.08.003] [
PMID] [
PMCID]
25. Kang C, Li Ji LJAotNYAoS. Role of PGC‐1α signaling in skeletal muscle health and disease. Ann. N. Y. Acad. Sci.2012;1271(1):110-7. [
DOI:10.1111/j.1749-6632.2012.06738.x] [
PMID] [
PMCID]
26. Sabaratnam R, Pedersen AJ, Eskildsen TV, Kristensen JM, Wojtaszewski JF, Højlund KJTJoCE, et al. Exercise induction of key transcriptional regulators of metabolic adaptation in muscle is preserved in type 2 diabetes. J. Clin. Endocrinol. Metab. 2019;104(10):4909-20. [
DOI:10.1210/jc.2018-02679] [
PMID]
27. Gahramani M KS. Effect of eight weeks high intensity interval training on NRF-1,2 and Tfam gene expressione levels in ST muscles in rats with myocardial infarction. Med. J. Tabriz Univ. Med. Sci. Health Serv. 2020 41(6):75-82. [
DOI:10.34172/mj.2020.009]
28. Ramachandran B, Yu G, Gulick T. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J. Biol. Chem. 2008;283(18):11935-46.
https://doi.org/10.1074/jbc.M707389200 [
DOI:10.1074/jbc.m707389200] [
PMID] [
PMCID]
29. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC‐1α gene in human skeletal muscle. J Physiol; 1;546(Pt 3):851-8. [
DOI:10.1113/jphysiol.2002.034850] [
PMID] [
PMCID]
30. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. P Proc. Natl. Acad. Sci. U.S.A. 2003;100(12):7111-6. [
DOI:10.1073/pnas.1232352100] [
PMID] [
PMCID]
31. Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes. 2006;55(7):2067-76. [
DOI:10.2337/db06-0150] [
PMID]
32. Street D, Nielsen JJ, Bangsbo J, Juel C. Metabolic alkalosis reduces exercise‐induced acidosis and potassium accumulation in human skeletal muscle interstitium. Physiol J 2005;566(2):481-9. [
DOI:10.1113/jphysiol.2005.086801] [
PMID] [
PMCID]
33. Constantin-Teodosiu D, Constantin D. Molecular mechanisms of muscle fatigue. Int J Mol Sci 2021;22(21):11587. [
DOI:10.3390/ijms222111587] [
PMID] [
PMCID]
34. Jan V, Miš K, Nikolic N, Dolinar K, Petrič M, Bone A, Thoresen GH, Rustan AC, Marš T, Chibalin AV, Pirkmajer S. Effect of differentiation, de novo innervation, and electrical pulse stimulation on mRNA and protein expression of Na+, K+-ATPase, FXYD1, and FXYD5 in cultured human skeletal muscle cells. Plos One 2021;16(2):e0247377. [
DOI:10.1371/journal.pone.0247377] [
PMID] [
PMCID]
35. Nielsen O. Ørtenblad N, Lamb GD, Stephenson DG. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity J Physiol 2004;557:133-46. [
DOI:10.1113/jphysiol.2003.059014] [
PMID] [
PMCID]
36. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 2015;88(Pt B):179-88. [
DOI:10.1016/j.freeradbiomed.2015.04.036] [
PMID] [
PMCID]
37. Hood DA. Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Applied Physiology, Nutr Metab 2009;34(3):465-72. [
DOI:10.1139/H09-045] [
PMID]
38. Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc Res 2008;79(2):208-17. [
DOI:10.1093/cvr/cvn098] [
PMID]