Volume 34, Issue 6 (September 2023)                   Studies in Medical Sciences 2023, 34(6): 338-352 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sarlak Z, Eidi A, Ghorbanzadeh V, Moghaddasi M, Mortazavi P. THE EFFECT OF SODIUM BUTYRATE AND AEROBIC EXERCISE WITH TREADMILL, ALONE OR IN COMBINATION, ON BODY WEIGHT AND GLYCEMIC PARAMETERS IN DIABETIC RATS WITH HIGH-FAT-STREPTOZOTOCIN DIET. Studies in Medical Sciences 2023; 34 (6) :338-352
URL: http://umj.umsu.ac.ir/article-1-5941-en.html
Cardiovascular research center, Shahid rahimi hospital, Lorestan university of medical science, Khorramabad, Iran (Corresponding Author) , vghorbanzadeh@gmail.com
Abstract:   (1508 Views)
Background & Aims: Type 2 diabetic mellitus is a popular metabolic disorder affecting enormous population around the world. The present study aimed to find out the effectiveness of sodium butyrate (NaB) and treadmill exercise on body weight and glycemic parameters in an experimental model of type 2 diabetes.
Materials & Methods: Thirty-five male Wistar rats were divided into 5 groups of control, diabetes, diabetes+sodium butyrate, diabetes+exercise, and diabetes+sodium butyrate+exercise. Type 2 diabetes was induced through 4 weeks of high-fat diet and then streptozotocin injection. Diabetic rats were treated with NaB (400 mg/kg daily) and treadmill exercise (5 days per week) for 6 weeks. Body weight and glycemic parameters such as fasting blood sugar, glucose tolerance, insulin level, insulin resistance index, and insulin sensitivity were evaluated in them.
Results: The results of this study showed that sodium butyrate combined with treadmill exercise causes a significant increase in body weight compared to the diabetic group (p < 0.05). Also, the blood glucose level significantly decreased in sodium butyrate (p < 0.05), exercise (p < 0.01) and sodium butyrate+exercise (p < 0.001) groups compared to the diabetes group. The level of blood sugar in the glucose tolerance test significantly decreased in sodium butyrate (p < 0.05), exercise (p < 0.01), and sodium butyrate+exercise (p < 0.001) groups compared to the diabetes group. In the sodium butyrate+exercise group, a significant increase in insulin (p < 0.05) and insulin sensitivity (p < 0.05) was observed. Also, although insulin resistance was reduced in the sodium butyrate+exercise group compared to the diabetes group, this reduction was not significant (p > 0.05).
Conclusion: Sodium butyrate combined with exercise can improve body weight and glycemic parameters in type 2 diabetes patients.
 
Full-Text [PDF 665 kb]   (433 Downloads)    
Type of Study: Research | Subject: فیزیولوژی

References
1. Zimmet P, Alberti K, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001;414(6865):782-7. [DOI:10.1038/414782a] [PMID]
2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018;14(2):88-98. [DOI:10.1038/nrendo.2017.151] [PMID]
3. Wang X, Xian T, Jia X, Zhang L, Liu L, Man F, et al. A cross-sectional study on the associations of insulin resistance with sex hormone, abnormal lipid metabolism in T2DM and IGT patients. Medicine 2017;96(26). [DOI:10.1097/MD.0000000000007378] [PMID] [PMCID]
4. Qi L, Liang J. Interactions between genetic factors that predict diabetes and dietary factors that ultimately impact on risk of diabetes. Curr Opinion Lipidol 2010;21(1):31. [DOI:10.1097/MOL.0b013e3283346cb6] [PMID] [PMCID]
5. Saremi A, Sh S, Kavyani A. The Effect of aerobic training on metabolic parameters and 1serumlevel of Sirtuin1 in women with type 2 diabetes. Arak Med Univ J 2016;19(114):88-97. [Google Scholar]
6. Eckel R, Grundy S. Zimmet PZ. The metabolic syndrome. Lancet 2005;365(9468):1415-28. [DOI:10.1016/S0140-6736(05)66378-7] [PMID]
7. Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 2011;17(12):1519. [DOI:10.3748/wjg.v17.i12.1519] [PMID] [PMCID]
8. Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012;48(4):612-26. [DOI:10.1016/j.molcel.2012.08.033] [PMID] [PMCID]
9. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009;58(7):1509-17. [DOI:10.2337/db08-1637] [PMID] [PMCID]
10. Zhang L, Du J, Yano N, Wang H, Zhao YT, Dubielecka PM, et al. Sodium butyrate protects against high fat diet‐induced cardiac dysfunction and metabolic disorders in type II diabetic mice. J Cell Biochem 2017;118(8):2395-408. [DOI:10.1002/jcb.25902] [PMID] [PMCID]
11. Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigen 2012;4(1):1-7. [DOI:10.1186/1868-7083-4-4] [PMID] [PMCID]
12. Li N, Hatch M, Wasserfall CH, Douglas-Escobar M, Atkinson MA, Schatz DA, et al. Butyrate and type 1 diabetes mellitus: can we fix the intestinal leak? J Pediatr Gastroenterol Nutr 2010;51(4):414-7. [DOI:10.1097/MPG.0b013e3181dd913a] [PMID]
13. Kanika G, Khan S, Jena G. Sodium butyrate ameliorates L‐arginine‐induced pancreatitis and associated fibrosis in wistar rat: role of inflammation and nitrosative stress. J Biochem Mol Toxicol 2015;29(8):349-59. [DOI:10.1002/jbt.21698] [PMID]
14. Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics 2015;7(4):669-80. [DOI:10.2217/epi.15.20] [PMID]
15. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504(7480):446-50. [DOI:10.1038/nature12721] [PMID]
16. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015;11(10):577-91. [DOI:10.1038/nrendo.2015.128] [PMID]
17. Hong J, Jia Y, Pan S, Jia L, Li H, Han Z, et al. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 2016;7(35):56071. [DOI:10.18632/oncotarget.11267] [PMID] [PMCID]
18. Huang Y, Gao S, Chen J, Albrecht E, Zhao R, Yang X. Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring. Oncotarget 2017;8(8):13073. [DOI:10.18632/oncotarget.14375] [PMID] [PMCID]
19. Morifuji T, Murakami S, Fujita N, Kondo H, Fujino H. Exercise training prevents decrease in luminal capillary diameter of skeletal muscles in rats with type 2 diabetes. Sci World J 2012;2012. [DOI:10.1100/2012/645891] [PMID] [PMCID]
20. Reusch JE, Bridenstine M, Regensteiner JG. Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord 2013;14(1):77-86. [DOI:10.1007/s11154-012-9234-4] [PMID] [PMCID]
21. Zierath JR. Invited review: exercise training-induced changes in insulin signaling in skeletal muscle. J Appl Physiol 2002;93(2):773-81. [DOI:10.1152/japplphysiol.00126.2002] [PMID]
22. Zheng J, Cheng J, Zheng S, Zhang L, Guo X, Zhang J, et al. Physical exercise and its protective effects on diabetic cardiomyopathy: what is the evidence? Front Endocrinol 2018;9:729. [DOI:10.3389/fendo.2018.00729] [PMID] [PMCID]
23. Westermeier F, Riquelme JA, Pavez M, Garrido V, Díaz A, Verdejo HE, et al. New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol 2016;7:125. [DOI:10.3389/fphys.2016.00125] [PMID] [PMCID]
24. Lavie CJ, Johannsen N, Swift D, Sénéchal M, Earnest C, Church T, et al. Exercise is Medicine--The Importance of Physical Activity, Exercise Training, Cardiorespiratory Fitness, and Obesity in the Prevention and Treatment of Type 2 Diabetes. US Endocrinol 2013;9(2). [PMCID]
25. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 2011;364(9):829-41. [DOI:10.1056/NEJMoa1008862] [PMID] [PMCID]
26. Farooqui AA, Farooqui T. Effects of Mediterranean diet components on neurodegenerative diseases. Role of the Mediterranean diet in the brain and neurodegenerative diseases: Elsevier; 2018. p. 1-16. [DOI:10.1016/B978-0-12-811959-4.00001-8]
27. Sarwar N, Gao P, Seshasai S, Gobin R, Kaptoge S, Di Angelantonio E, et al. Emerging Risk Factors Collaboration Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010;375(9733):2215-22. [DOI:10.1016/S0140-6736(10)60484-9] [PMID]
28. Atchison EA, Gridley G, Carreon JD, Leitzmann MF, McGlynn KA. Risk of cancer in a large cohort of US veterans with diabetes. Int J Cancer 2011;128(3):635-43. [DOI:10.1002/ijc.25362] [PMID] [PMCID]
29. Della Corte CM, Ciaramella V, Di Mauro C, Castellone MD, Papaccio F, Fasano M, et al. Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells. Oncotarget 2016;7(4):4265. [DOI:10.18632/oncotarget.6559] [PMID] [PMCID]
30. Gao F, Lv Y-W, Long J, Chen J-M, He J-m, Ruan X-Z, et al. Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet. Front Pharmacol 2019;10:1040. [DOI:10.3389/fphar.2019.01040] [PMID] [PMCID]
31. Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005;52(4):313-20. [DOI:10.1016/j.phrs.2005.05.004] [PMID]
32. Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Prev Cardiol 2007;14(6):753-60. [DOI:10.1097/HJR.0b013e3281eacef1] [PMID]
33. Rahmati M, Kazemi A. Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene 2019;692:185-94. [DOI:10.1016/j.gene.2019.01.013] [PMID]
34. Matthews DR, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28(7):412-9. [DOI:10.1007/BF00280883] [PMID]
35. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. Clin Endocrinol Metab 2000;85(7):2402-10. [DOI:10.1210/jcem.85.7.6661] [PMID]
36. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008;135(1):61-73. [DOI:10.1016/j.cell.2008.07.043] [PMID] [PMCID]
37. MATSUO T, SUZUKI M. Beef tallow diet decreases lipoprotein lipase activities in brown adipose tissue, heart, and soleus muscle by reducing sympathetic activities in rats. J Nutr Sci Vitaminol 1994;40(6):569-81. [DOI:10.3177/jnsv.40.569] [PMID]
38. Awad A, Zepp E. Alteration of rat adipose tissue lipolytic response to norepinephrine by dietary fatty acid manipulation. Biochem Biophys Res Commun 1979;86(1):138-44. [DOI:10.1016/0006-291X(79)90392-9] [PMID]
39. Takeuchi H, Matsuo T, Tokuyama K, Shimomura Y, Suzuki M. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet. J Nutr 1995;125(4):920. [Google Scholar]
40. TAKEUCHI H, MATsuo T, TOKUYAMA K, SUZUKI M. Effect of dietary fat type on β-oxidation of brown adipose tissue and Na+ channel density of brain nerve membrane in rats. Nutr Sci Vitaminol 1996;42(2):161-6. [DOI:10.3177/jnsv.42.161] [PMID]
41. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21(6):697-738. [DOI:10.1210/edrv.21.6.0415] [PMID]
42. Wang X, He G, Peng Y, Zhong W, Wang Y, Zhang B. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep 2015;5(1):1-10. [DOI:10.1038/srep12676] [PMID] [PMCID]
43. Zheng L, Yang W, Wu F, Wang C, Yu L, Tang L, et al. Prognostic Significance of AMPK Activation and Therapeutic Effects of Metformin in Hepatocellular CarcinomaAnticancer Effect of Therapeutic Metformin/AMPK Activation on HCC. Clin Cancer Res 2013;19(19):5372-80. [DOI:10.1158/1078-0432.CCR-13-0203] [PMID]
44. Dagon Y, Avraham Y, Berry EM. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2α in adipocytes. Biochem Biophys Res Commun 2006;340(1):43-7. [DOI:10.1016/j.bbrc.2005.11.159] [PMID]
45. Rumberger JM, Arch JR, Green A. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ 2014;2:e611. [DOI:10.7717/peerj.611] [PMID] [PMCID]
46. Guo Y, Xiao Z, Wang Y, Yao W, Liao S, Yu B, et al. Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression. Front Endocrinol 2018;9:630. [DOI:10.3389/fendo.2018.00630] [PMID] [PMCID]
47. Arnoldussen I, Wiesmann M, Pelgrim C, Wielemaker E, Van Duyvenvoorde W, Amaral-Santos P, et al. Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice. Int J Obes 2017;41(6):935-44. [DOI:10.1038/ijo.2017.52] [PMID]
48. Kim DY, Jung SY, Kim CJ, Sung YH, Kim JD. Treadmill exercise ameliorates apoptotic cell death in the retinas of diabetic rats. Mol Med Rep 2013;7(6):1745-50. [DOI:10.3892/mmr.2013.1439] [PMID]
49. Liu G, Keeler BE, Zhukareva V, Houlé JD. Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats. Exp Neurol 2010;226(1):200-6. [DOI:10.1016/j.expneurol.2010.08.032] [PMID] [PMCID]
50. Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, et al. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J Endocrinol 2017;232(1):71-83. [DOI:10.1530/JOE-16-0322] [PMID]
51. Khan S, Jena G. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chem Biol Interact 2014;213:1-12. [DOI:10.1016/j.cbi.2014.02.001] [PMID]
52. Chou DH-C, Holson EB, Wagner FF, Tang AJ, Maglathlin RL, Lewis TA, et al. Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis. Chem Biol 2012;19(6):669-73. [DOI:10.1016/j.chembiol.2012.05.010] [PMID] [PMCID]
53. Hara N, Alkanani AK, Dinarello CA, Zipris D. Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes. J Mol Med 2014;92(1):93-102. [DOI:10.1007/s00109-013-1078-1] [PMID]
54. Elgamal DA, Abou-Elghait AT, Ali AY, Ali M, Bakr MH. Ultrastructure characterization of pancreatic β-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats. Mol Cell Endocrinol 2020;503:110700. [DOI:10.1016/j.mce.2019.110700] [PMID]
55. Mollica MP, Mattace Raso G, Cavaliere G, Trinchese G, De Filippo C, Aceto S, et al. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 2017;66(5):1405-18. [DOI:10.2337/db16-0924] [PMID]
56. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014;156(1-2):84-96. [DOI:10.1016/j.cell.2013.12.016] [PMID]
57. Sennott J, Morrissey J, Standley PR, Broderick TL. Treadmill exercise training fails to reverse defects in glucose, insulin and muscle GLUT4 content in the db/db mouse model of diabetes. Pathophysiol 2008;15(3):173-9. [DOI:10.1016/j.pathophys.2008.06.001] [PMID]
58. Ghorbanian B, Ghasemnian A. The effects of 8 weeks interval endurance combined training on plasma TNF-α, IL-10, insulin resistance and lipid profile in boy adolescents. J Pract Stud Biosci Sport 2016;4(7):43-54. [Google Scholar]
59. Omidi M, Yousefi M. The effect of 8 weeks of aerobic exercise and 4 weeks detraining on serum fast blood sugar, insulin and glycosylated hemoglobin in. J Pract Stud Biosci Sport 2019;7(13):55-64. [Google Scholar]
60. Gavin C, Sigal RJ, Cousins M, Menard ML, Atkinson M, Khandwala F, et al. Resistance exercise but not aerobic exercise lowers remnant-like lipoprotein particle cholesterol in type 2 diabetes: a randomized controlled trial. Atherosclerosis 2010;213(2):552-7. [DOI:10.1016/j.atherosclerosis.2010.08.071] [PMID]
61. Rahmati M, Gharakhanlou R, Movahedin M, Mowla SJ, Khazani A, Fouladvand M, et al. Treadmill training modifies KIF5B motor protein in the STZ-induced diabetic rat spinal cord and sciatic nerve. Arch Iran Med 2015;18(2):0-. [Google Scholar]
62. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care 2002;25(12):2335-41. [DOI:10.2337/diacare.25.12.2335] [PMID]
63. Kumar AS, Maiya AG, Shastry B, Vaishali K, Ravishankar N, Hazari A, et al. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann Rehabil Med 2019;62(2):98-103. [DOI:10.1016/j.rehab.2018.11.001] [PMID]
64. Abdolmaleki F, Heidarianpour A. Endurance exercise training restores diabetes-induced alteration in circulating Glycosylphosphatidylinositol-specific phospholipase D levels in rats. Diabetol Metab Syndr 2020;12(1):1-8. [DOI:10.1186/s13098-020-00553-z] [PMID] [PMCID]
65. Magkos F, Tsekouras Y, Kavouras SA, Mittendorfer B, Sidossis LS. Improved insulin sensitivity after a single bout of exercise is curvilinearly related to exercise energy expenditure. Clin Sci 2008;114(1):59-64. [DOI:10.1042/CS20070134] [PMID]
66. Kirwan JP, Solomon TP, Wojta DM, Staten MA, Holloszy JO. Effects of 7 days of exercise training on insulin sensitivity and responsiveness in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2009;297(1):E151-E6. [DOI:10.1152/ajpendo.00210.2009] [PMID] [PMCID]
67. Yousefipoor P, Tadibi V, Behpoor N, Parnow A, Delbari M, Rashidi S. Effects of aerobic exercise on glucose control and cardiovascular risk factor in type 2 diabetes patients. Med J Mashhad Univ Med Sci 2015;57(9):976-84. [Google Scholar]
68. Atalay M, Laaksonen DE. Diabetes, oxidative stress and physical exercise. J Sports Sci Med 2002;1(1):1. [PMCID]
69. Kwak H-B. Effects of aging and exercise training on apoptosis in the heart. J Exerc Rehabil 2013;9(2):212. [DOI:10.12965/jer.130002] [PMID] [PMCID]
70. Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, Sugawara K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 2002;8:6-48. [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb