Volume 33, Issue 7 (October 2022)                   Studies in Medical Sciences 2022, 33(7): 541-552 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohmadi H, Barghmadi M, Mohamadi R. COMPARISON OF THE EFFECT OF TRANSCRANIAL STIMULATION OF PRIMARY MOTOR CORTEX (M1) AND RELAXATION TONE AND MINDFULNESS-BASED BREATHING (MBMR) ON GROUND REACTION FORCE OF LOWER LIMB DURING WALKING IN SUBJECTS WITH PATELLOFEMORAL PAIN. Studies in Medical Sciences 2022; 33 (7) :541-552
URL: http://umj.umsu.ac.ir/article-1-5844-en.html
Associate Professor of Sports Biomechanics, Department of Physical Education and Sports Sciences, Faculty of Educational Sciences and Psychology, Mohaghegh Ardabili University, Ardabil, Iran, (Corresponding Author) , sscdsdcsdc@gmail.com
Abstract:   (283 Views)
Background & Aims: Patellofemoral pain syndrome is a term used to describe pain that originates in the patellofemoral joint or the soft tissues surrouning it. This study compared the effects of relaxation tones and mindfulness-based breathing on the magnitude of the ground reaction force experienced by patellar femoris patients while walking to those of transcranial stimulation of the primary motor cortex.
Materials & Methods: Thirty men with patellofemoral pain participated in this semi-experimental study. With the aid of a force plate device, ground reaction force variables were assessed before and after transcranial stimulation, relaxation, and mindfulness-based breathing. The data were statistically analyzed using a two-way analysis of variance with a significance level of 0.05.
Results: The results showed that the effect of the time factor was statistically significant on the peak internal-external force during heel contact (P=0.049), when the foot leaves the ground (P=0.001), the peak anterior-posterior force during heel separation from the ground (P=0.044), and the peak vertical ground reaction force during heel separation from the ground (P=0.011). The effect of the time factor was statistically significant on peak internal-external forces during heel contact (P=0.004), peak anterior-posterior forces when the foot leaves the ground (P=0.017), peak vertical forces during heel contact with the ground (P=0.009), and peak vertical forces during foot separation from the ground (P=0.047).
Conclusion: Based on the findings, it can be inferred that transcranial stimulation of the primary motor cortex, as well as body relaxation and mindfulness-based breathing awareness may be effective in reducing patellofemoral pain.
Full-Text [PDF 553 kb]   (153 Downloads)    
Type of Study: Research | Subject: Exercise physiology

References
1. Glaviano NR, Kew M, Hart JM, Saliba S. Demographic and epidemiological trends in patellofemoral pain. Int J Sports Phys Ther 2015;10(3):281. [PMCID]
2. Bolgla LA, Malone TR, Umberger BR, Uhl TL. Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther 2008;38(1):12-8. [DOI:10.2519/jospt.2008.2462] [PMID]
3. Nascimento LR, Teixeira-Salmela LF, Souza RB, Resende RA. Hip and knee strengthening is more effective than knee strengthening alone for reducing pain and improving activity in individuals with patellofemoral pain: a systematic review with meta-analysis. J Orthop Sports Phys Ther 2018;48(1):19-31. [DOI:10.2519/jospt.2018.7365] [PMID]
4. de Oliveira Silva D, Barton CJ, Pazzinatto MF, Briani RV, de Azevedo FM. Proximal mechanics during stair ascent are more discriminate of females with patellofemoral pain than distal mechanics. Clin Biomech 2016;35:56-61. [DOI:10.1016/j.clinbiomech.2016.04.009] [PMID]
5. Paoloni M, Mangone M, Fratocchi G, Murgia M, Saraceni VM, Santilli V. Kinematic and kinetic features of normal level walking in patellofemoral pain syndrome: More than a sagittal plane alteration. J Biomech 2010;43(9):1794-8. [DOI:10.1016/j.jbiomech.2010.02.013] [PMID]
6. Sacco K, Galetto V, Dimitri D, Geda E, Perotti F, Zettin M, et al. Concomitant use of transcranial direct current stimulation and computer-assisted training for the rehabilitation of attention in traumatic brain injured patients: behavioral and neuroimaging results. Front Behav Neurosci 2016;10:57. [DOI:10.3389/fnbeh.2016.00057] [PMID] [PMCID]
7. Lafon B, Rahman A, Bikson M, Parra LC. Direct current stimulation alters neuronal input/output function. Brain Stimul 2017;10(1):36-45. [DOI:10.1016/j.brs.2016.08.014] [PMID] [PMCID]
8. Eldaief MC, Press DZ, Pascual-Leone A. Transcranial magnetic stimulation in neurology: a review of established and prospective applications. Neur Clin Prac 2013;3(6):519-26. [DOI:10.1212/01.CPJ.0000436213.11132.8e] [PMID] [PMCID]
9. Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 2009;196(3):459-65. [DOI:10.1007/s00221-009-1863-9] [PMID] [PMCID]
10. Nonnekes J, Arrogi A, Munneke MA, van Asseldonk EH, Oude Nijhuis LB, Geurts AC, et al. Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS One 2014;9(9):e107731. [DOI:10.1371/journal.pone.0107731] [PMID] [PMCID]
11. Benninger DH, Berman B, Houdayer E, Pal N, Luckenbaugh D, Schneider L, et al. Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease. Neurology 2011;76(7):601-9. [DOI:10.1212/WNL.0b013e31820ce6bb] [PMID] [PMCID]
12. Aminaka N, Gribble PA. Patellar taping, patellofemoral pain syndrome, lower extremity kinematics, and dynamic postural control. J Athl Train 2008;43(1):21-8. [DOI:10.4085/1062-6050-43.1.21] [PMID] [PMCID]
13. Smith TO, Davies L, Donell ST. The reliability and validity of assessing medio-lateral patellar position: a systematic review. Man Ther 2009;14(4):355-62. [DOI:10.1016/j.math.2008.08.001] [PMID]
14. Toulotte C, Thevenon A, Fabre C. Effects of training and detraining on the static and dynamic balance in elderly fallers and non-fallers: a pilot study. Disabil Rehabil 2006;28(2):125-33. [DOI:10.1080/09638280500163653] [PMID]
15. Miller J, Westrick R, Diebal A, Marks C, Gerber JP. Immediate effects of lumbopelvic manipulation and lateral gluteal kinesio taping on unilateral patellofemoral pain syndrome: a pilot study. Sports Health 2013;5(3):214-9. [DOI:10.1177/1941738112473561] [PMID] [PMCID]
16. Peeler J, Ripat J. The effect of low-load exercise on joint pain, function, and activities of daily living in patients with knee osteoarthritis. Knee 2018;25(1):135-45. [DOI:10.1016/j.knee.2017.12.003] [PMID]
17. Song C-Y, Lin J-J, Chang AH. Effects of femoral rotational taping on dynamic postural stability in female patients with patellofemoral pain. Clin J Sport Med 2017;27(5):438-43. [DOI:10.1097/JSM.0000000000000392] [PMID]
18. Ebrahimi AA, Dehghani TM, Khoshraftare YN, Dehghani TV. The effects of patellar taping on dynamic balance and reduction of pain in athletic women with patellofemoral pain syndrome (PFPS). SSU J 2012;20(3):332-9. [URL]
19. Negahban H, Etemadi M, Naghibi S, Emrani A, Yazdi MJS, Salehi R, et al. The effects of muscle fatigue on dynamic standing balance in people with and without patellofemoral pain syndrome. Gait Posture 2013;37(3):336-9. [DOI:10.1016/j.gaitpost.2012.07.025] [PMID]
20. Aghapour E, Kamali F, Sinaei E. Effects of Kinesio Taping® on knee function and pain in athletes with patellofemoral pain syndrome. J Bodyw Mov Ther 2017;21(4):835-9. [DOI:10.1016/j.jbmt.2017.01.012] [PMID]
21. Mohammadi R, Alipour A, Hajihaji K. Synergistic Effect of Mindful Breath awareness and Muscle Relaxation (MBMR) and Cranio-Electro Stimulation (CES) on Improving Sleep Quality in Patients with Type 2 Diabetes. Neuropsychology 2021;7(1):85-102. [Google Scholar]
22. Damavandi M, Dixon PC, Pearsall DJJHms. Ground reaction force adaptations during cross-slope walking and running. Hum Mov Sci 2012;31(1):182-9. [DOI:10.1016/j.humov.2011.06.004] [PMID]
23. Robertson GE, Caldwell GE, Hamill J, Kamen G, Whittlesey S. Research methods in biomechanics: Human kinetics; 2013. [DOI:10.5040/9781492595809]
24. Noehren B, Hamill J, Davis I. Prospective evidence for a hip etiology in patellofemoral pain. Med Sci Sports Exerc 2013;45(6):1120-4. [DOI:10.1249/MSS.0b013e31828249d2] [PMID]
25. Kepple TM, Siegel KL, Stanhope SJ. Relative contributions of the lower extremity joint moments to forward progression and support during gait. Gait Posture 1997;6(1):1-8. [DOI:10.1016/S0966-6362(96)01094-6]
26. Schizas C, Kramers-de Quervain I, Stüssi E, Grob D. Gait asymmetries in patients with idiopathic scoliosis using vertical forces measurement only. Eur Spine J 1998;7:95-8. [DOI:10.1007/s005860050037] [PMID] [PMCID]
27. Sharifmoradi K, Farahpour N, Bahram A, Karimi MT, Mazdeh M. An assessment of gait spatiotemporal and ground reaction force characteristics of patients with Parkinson compared with normal elderly. J Res Rehab Sci 2015;10(5):676-86. [Google Scholar]
28. Noehren B, Sanchez Z, Cunningham T, McKeon PO. The effect of pain on hip and knee kinematics during running in females with chronic patellofemoral pain. Gait Posture 2012;36(3):596-9. [DOI:10.1016/j.gaitpost.2012.05.023] [PMID]
29. Zaffagnini S, Dejour D, Arendt EA. Patellofemoral pain, instability, and arthritis: Springer; 2010. [DOI:10.1007/978-3-642-05424-2] [PMCID]
30. Best JR, Miller PH, Jones LL. Executive functions after age 5: Changes and correlates. Dev Rev 2009;29(3):180-200. [DOI:10.1016/j.dr.2009.05.002] [PMID] [PMCID]
31. Bogdanov M. Shifting the balance: Understanding the causal contribution of the lateral prefrontal cortex to flexible cognition under stress and no-stress: Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky; 2017. [Google Scholar]
32. Kennerly RC. Changes in quantitative EEG and low resolution tomography following cranial electrotherapy stimulation. 2006. [URL]
33. Seguin R, Nelson ME. The benefits of strength training for older adults. Am J Prev Med 2003;25(3):141-9. [DOI:10.1016/S0749-3797(03)00177-6] [PMID]
34. Zhuang J, Huang L, Wu Y, Zhang Y. The effectiveness of a combined exercise intervention on physical fitness factors related to falls in community-dwelling older adults. Clin Interv Aging 2014:131-40. [DOI:10.2147/CIA.S56682] [PMID] [PMCID]
35. Van Oeveren BT, de Ruiter CJ, Beek PJ, van Dieën JH. The biomechanics of running and running styles: a synthesis. Sports Biomech 2021:1-39. [DOI:10.1080/14763141.2021.1873411] [PMID]
36. Farahpour N, Jafarnezhadgero A, Allard P, Majlesi M. Muscle activity and kinetics of lower limbs during walking in pronated feet individuals with and without low back pain. J Electromyogr Kinesiol 2018;39:35-41. [DOI:10.1016/j.jelekin.2018.01.006] [PMID]
37. Damavandi M, Dixon PC, Pearsall DJ. Ground reaction force adaptations during cross-slope walking and running. Hum Mov Sci 2012;31(1):182-9. [DOI:10.1016/j.humov.2011.06.004] [PMID]
38. Kelly A, O'Mara S. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. 2011. [Google Scholar]
39. Jalalvand A, Hosseini Y, Amini A. A comparative study of ground reaction forces, loading rate and impulse during single leg drop landing in Recurrent Low back Pain Population. Anesthesiol Pain 2018;8(4):46-60. [Google Scholar]
40. Gruber A, Warne J, Hamill J. Isolated effects of footwear structure and cushioning on running mechanics in habitual mid/forefoot runners. Sports Biomech 2022:1-20. [DOI:10.1080/14763141.2022.2129088] [PMID]
41. Norinasab S, Jafarnezhadgero A, Siahkouhian M, Valizadehorang A. The Effect of Using Brace in Three Different Knee Flexion Angles on Frequency of Muscular Activity During Running in People With Genu Varus. Sci J Rehab Med 2022;10(6):1168-81. [DOI:10.32598/SJRM.10.6.4]
42. Pezeshk AF, Sadeghi H. Review Paper Interaction Between Surface Stiffness and Lower Limb Stiffness and its Effects on the Performance and Injury. Sci J Rehab Med 2022;11(2):180-93. [DOI:10.32598/SJRM.11.2.12]
43. Dalvandpour N, Zarei M. The effect of acute focus of attention instructions on ACL injury prevention. Sci J Rehab Med 2022. [Google Scholar]
44. Jafarnezhadgero AA, Oliveira AS, Mousavi SH, Madadi-Shad M. Combining valgus knee brace and lateral foot wedges reduces external forces and moments in osteoarthritis patients. Gait Posture 2018;59:104-10. [DOI:10.1016/j.gaitpost.2017.09.040] [PMID]
45. Raymond J, Nicholson LL, Hiller CE, Refshauge KM. The effect of ankle taping or bracing on proprioception in functional ankle instability: a systematic review and meta-analysis. J Sci Med Sport 2012;15(5):386-92. [DOI:10.1016/j.jsams.2012.03.008] [PMID]
46. Callaghan MJ, Selfe J, McHenry A, Oldham JA. Effects of patellar taping on knee joint proprioception in patients with patellofemoral pain syndrome. Man Ther 2008;13(3):192-9. [DOI:10.1016/j.math.2006.11.004] [PMID]
47. Williams S, Whatman C, Hume PA, Sheerin K. Kinesio taping in treatment and prevention of sports injuries. Sports Med 2012;42(2):153-64. [DOI:10.2165/11594960-000000000-00000] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb