Volume 33, Issue 3 (June 2022)                   Studies in Medical Sciences 2022, 33(3): 160-170 | Back to browse issues page

Ethics code: IR.SHAHED.REC.1397.033


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akrami A, Mombeini T, Roghani M. THE EFFECT OF DIALLYL SULFIDE ON LIPOPOLYSACCHARIDE-INDUCED ACUTE KIDNEY DYSFUNCTION IN THE MOUSE. Studies in Medical Sciences 2022; 33 (3) :160-170
URL: http://umj.umsu.ac.ir/article-1-5797-en.html
Professor, Neurophysiology Research Center, Shahed University, Tehran, Iran (Corresponding Author) , mehjour@yahoo.com
Abstract:   (960 Views)
Background & Aims: Diallyl sulfide (DAS) is an organosulfur compound derived from garlic with antioxidative and multiple protective effects. Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria that is commonly used to create an animal models of Acute Kidney Dysfunction (AKI). LPS can cause renal injury by induction of oxidative stress reactions. According to the role of oxidative stress in the incidence of AKI caused by sepsis, the purpose of this study was to determine the effect of DAS on acute kidney dysfunction due to LPS.
Materials & Methods: In this experimental study, 32 male C57BL / 6 mice were divided randomly into 4 groups of control, LPS, and two LPS under treatment with DAS (50, and 200 mg/kg) groups. In two DAS treatment groups, oral administration of diallyl sulfide was performed at a single dose and one hour before injection of LPS. AKI was induced by a single dose intraperitoneal injection of 10 mg/kg of LPS. Twenty-four hours after LPS injection, blood samples were collected via heart for BUN and creatinine analysis. Also, homogenization of kidney tissue was prepared to measure oxidative stress markers including malondialdehyde (MDA), nitrite, and catalase.
Results: As compared with LPS group, DAS administered at 200 mg/kg significantly reduced MDA, but reduce in nitrite and increase in catalase activity were not significant. Also, in order to improve kidney function, it significantly reduced serum BUN and creatinine levels as compared with LPS group.
Conclusion: DAS can improve renal dysfunction following LPS, and its beneficial effect is through reducing oxidative stress and possible enhancement of antioxidant defence system.
Full-Text [PDF 522 kb]   (341 Downloads)    
Type of Study: Clinical trials | Subject: نفرولوژی

References
1. Waikar SS, Bonventre JV. Acute Kidney Injury. In: Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Harrison's Principles of Internal Medicine, 20e. 10. New York: McGraw-Hill Education; 2018. p. 2293-308. [URL]
2. Negi S, Koreeda D, Kobayashi S, Yano T, Tatsuta K, Mima T, et al. Acute kidney injury: Epidemiology, outcomes, complications, and therapeutic strategies. Seminars in Dialysis 2018;31. [DOI:10.1111/sdi.12705] [PMID]
3. Vervaet B, D'Haese P, Verhulst A. Environmental toxin-induced acute kidney injury. Clin Kidney J 2017;10:747-58. [DOI:10.1093/ckj/sfx062] [PMID] [PMCID]
4. Makris K, Spanou L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin Biochem Rev 2016;37(2):85-98. [PMID]
5. Gameiro J, Agapito Fonseca J, Jorge S, Lopes JA. Acute Kidney Injury Definition and Diagnosis: A Narrative Review. J Clin Med 2018;7(10):307. [DOI:10.3390/jcm7100307] [PMID] [PMCID]
6. Tong W, Chen X, Song X, Chen Y, Jia R, Zou Y, et al. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp Ther Med 2020;19(3):1824-34. [DOI:10.3892/etm.2019.8396]
7. Zhang J, Yang S, Chen F, Li H, Chen B. Ginkgetin aglycone ameliorates LPS-induced acute kidney injury by activating SIRT1 via inhibiting the NF-κB signaling pathway. Cell Biosci 2017;7(1):44. https://doi.org/10.1186/s13578-019-0310-2 [DOI:10.1186/s13578-017-0173-3]
8. Chen J, Wang F, Yin Y, Ma X. The nutritional applications of garlic (Allium sativum) as natural feed additives in animals. Peer J 2021;9:e11934-e. [DOI:10.7717/peerj.11934] [PMID] [PMCID]
9. Shang A, Cao S-Y, Xu X-Y, Gan R-Y, Tang G-Y, Corke H, et al. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019;8(7):246. [DOI:10.3390/foods8070246] [PMID] [PMCID]
10. Mondal A, Banerjee S, Bose S, Mazumder S, Haber RA, Farzaei MH, et al. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2022;175:105837. [DOI:10.1016/j.phrs.2021.105837] [PMID]
11. Rauf A, Abu-Izneid T, Thiruvengadam M, Imran M, Olatunde A, Shariati MA, et al. Garlic (Allium sativum L.): Its Chemistry, Nutritional Composition, Toxicity and Anticancer Properties. Curr Top Med Chem 2021;21. [DOI:10.2174/1568026621666211105094939] [PMID]
12. Darling-Reed SF, Nkrumah-Elie Y, Ferguson DT, Flores-Rozas H, Mendonca P, Messeha S, et al. Diallyl Sulfide Attenuation of Carcinogenesis in Mammary Epithelial Cells through the Inhibition of ROS Formation, and DNA Strand Breaks. Biomolecules 2021;11(9):1313. [DOI:10.3390/biom11091313] [PMID] [PMCID]
13. Hasssanzadeh H, Alizadeh M, Rezazad Bari M. Formulation of garlic oil-in-water nanoemulsion: antimicrobial and physicochemical aspects. IET Nanobiotechnol 2018;12(5):647-52. [DOI:10.1049/iet-nbt.2017.0104] [PMID] [PMCID]
14. Li W-R, Shi Q-S, Liang Q, Huang X-M, Chen Y-B. Antifungal effect and mechanism of garlic oil on Penicillium funiculosum. Appl Microbiol Biotechnol 2014;98(19):8337-46. [DOI:10.1007/s00253-014-5919-9] [PMID]
15. Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, et al. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci Technol 2020;104:219-34. [DOI:10.1016/j.tifs.2020.08.006] [PMID] [PMCID]
16. Suman S, Shukla Y. Diallyl Sulfide and Its Role in Chronic Diseases Prevention. In: Gupta SC, Prasad S, Aggarwal BB, editors. Drug Discovery from Mother Nature2016. p. 127-44. [DOI:10.1007/978-3-319-41342-6_6] [PMID]
17. Prasad S, Kalra N, Srivastava S, Shukla Y. Regulation of oxidative stress-mediated apoptosis by diallyl sulfide in DMBA-exposed Swiss mice. Hum Exp Toxicol 2008;27(1):55-63. [DOI:10.1177/0960327108088978] [PMID]
18. Elkhoely A, Kamel R. Diallyl sulfide alleviates cisplatin-induced nephrotoxicity in rats via suppressing NF-κB downstream inflammatory proteins and p53/Puma signalling pathway. Clin Exp Pharmacol Physiol 2018;45(6):591-601. [DOI:10.1111/1440-1681.12910] [PMID]
19. Elkhoely A. Diallyl sulfide ameliorates carbon tetrachloride-induced hepatotoxicity in rats via suppressing stress-activated MAPK signaling pathways. J Biochem Mol Toxicol 2019;33(6):e22307. [DOI:10.1002/jbt.22307] [PMID]
20. Li M, Wang S, Li X, Kou R, Wang Q, Wang X, et al. Diallyl sulfide treatment protects against acetaminophen-/carbon tetrachloride-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Toxicol Res 2018;8(1):67-76. [DOI:10.1039/C8TX00185E] [PMID] [PMCID]
21. Li J, Zhang Z, Wang L, Jiang L, Qin Z, Zhao Y, et al. Maresin 1 Attenuates Lipopolysaccharide-Induced Acute Kidney Injury via Inhibiting NOX4/ROS/NF-κB Pathway. 2021;12. [DOI:10.3389/fphar.2021.782660] [PMID] [PMCID]
22. Hassan E, Kahilo K, Abouzeid T, El-Neweshy M, Hassan M. Protective effect of diallyl sulfide against lead-mediated oxidative damage, apoptosis and down-regulation of CYP19 gene expression in rat testes. Life Sci 2019;226:193-201. [DOI:10.1016/j.lfs.2019.04.020] [PMID]
23. Khajevand‐Khazaei MR, Azimi S, Sedighnejad L, Salari S, Ghorbanpour A, Baluchnejadmojarad T, et al. S‐allyl cysteine protects against lipopolysaccharide‐induced acute kidney injury in the C57BL/6 mouse strain: Involvement of oxidative stress and inflammation. Int Immunopharmacol 2019;69:19-26. [DOI:10.1016/j.intimp.2019.01.026] [PMID]
24. Zaki OS, Safar MM, Ain-Shoka AA, Rashed LA. Bone Marrow Mesenchymal Stem Cells Combat Lipopolysaccharide-Induced Sepsis in Rats via Amendment of P38-MAPK Signaling Cascade. Inflammation 2018;41(2):541-54. [DOI:10.1007/s10753-017-0710-6] [PMID]
25. Khajevand‐Khazaei MR, Mohseni-Moghaddam P, Hosseini MS, Gholami L, Baluchnejadmojarad T, Roghani MJEJoP. Rutin, a quercetin glycoside, alleviates acute endotoxemic kidney injury in C57BL/6 mice via suppression of inflammation and up‐regulation of antioxidants and SIRT1. Eur J Pharmacol 2018;833:307-13. [DOI:10.1016/j.ejphar.2018.06.019] [PMID]
26. Nozaki Y, Hino S, Ri J, Sakai K, Nagare Y, Kawanishi M, et al. Lipopolysaccharide-Induced Acute Kidney Injury Is Dependent on an IL-18 Receptor Signaling Pathway. Int J Mol Sci 2017;18(12):2777. [DOI:10.3390/ijms18122777] [PMID] [PMCID]
27. Kim J-Y, Hong H-L, Kim GM, Leem J, Kwon HH. Protective Effects of Carnosic Acid on Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Molecules 2021;26(24):7589. [DOI:10.3390/molecules26247589] [PMID] [PMCID]
28. Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M, Sudhandiran G. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. Eur J Pharmacol 2009;606(1-3):162-71. [DOI:10.1016/j.ejphar.2008.12.055] [PMID]
29. Ansar S, Iqbal M, AlJameil N. Diallyl sulphide, a component of garlic, abrogates ferric nitrilotriacetate-induced oxidative stress and renal damage in rats. Hum Exp Toxicol 2014;33(12):1209-16. [DOI:10.1177/0960327114524237] [PMID]
30. Nasri H, Rafieian-Kopaei M. Preventive and Curative Activity of Garlic Extract on Gentamicin-Induced Oxidative Stress. J Isfahan Med Sch 2014;31(271):2412-22. [Google Scholar]
31. Nasri H, Rafieian-Kopaei M. Preventive and Curative Effect of Garlic on Nephrotoxic Effect of Gentamicin in Rat. J Babol Univ Med Sci 2014;16(2):42-8. [Google Scholar]
32. Johari H, Zamani Z, Mokhtari M, Hemayatkhah Jahromi V, Jamali H, Yazdani M. The Investigation of Garlic (Allium Sativum) Extract on Lead Detoxification of Neonatal Rats Kidney. J Adv Bio Sci 2014;4(1):90-8. [Google Scholar]
33. Li M, Wang S, Li X, Jiang L, Wang X, Kou R, et al. Diallyl sulfide protects against lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Food Chem Toxicol 2018;120:500-9. [DOI:10.1016/j.fct.2018.07.053] [PMID]
34. Baghshani H, Ghodsi V. Modulatory effects of garlic powder on cyanide-induced oxidative stress in some tissues of rat. Empiric Anim Biol J 2017;6(1):71-9. [Google Scholar]
35. Abdel-Daim MM, Abushouk AI, Bungău SG, Bin-Jumah M, El-kott AF, Shati AA, et al. Protective effects of thymoquinone and diallyl sulphide against malathion-induced toxicity in rats. Environ Sci Pollut Res Int 2020;27(10):10228-35. [DOI:10.1007/s11356-019-07580-y] [PMID]
36. Yu T, Wang Q, Li XJ, Li M, Liu ZD, Xie KQ. Antioxidant mechanism of diallyl sulfide in inhibiting leucopenia in peripheral blood induced by benzene in rats. Chin J Ind Hyg Occup Dis 2019;37(10):737-45. [Google Scholar]
37. Li M, Wang S, Li X, Wang Q, Liu Z, Yu T, et al. Inhibitory effects of diallyl sulfide on the activation of Kupffer cell in lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. J Func Foods 2019;62:103550. [DOI:10.1016/j.jff.2019.103550]
38. Habibi E, Baâti T, Njim L, M'Rabet Y, Hosni K. Antioxidant and protective effects of extra virgin olive oil incorporated with diallyl sulfide against CCl(4)-induced acute liver injury in mice. Food Sci Nutr 2021;9(12):6818-30. [DOI:10.1002/fsn3.2638] [PMID] [PMCID]
39. Pang S, Dong W, Liu N, Gao S, Li J, Zhang X, et al. Diallyl sulfide protects against dilated cardiomyopathy via inhibition of oxidative stress and apoptosis in mice. Mol Med Rep 2021;24(6):852. [DOI:10.3892/mmr.2021.12492] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb