Volume 33, Issue 6 (September 2022)                   Studies in Medical Sciences 2022, 33(6): 392-403 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5714-en.html
Department of Biology, Faculty of Science, Arak University, Arak, Iran (Corresponding Author) , j-sargolzaei@araku.ac.ir
Abstract:   (746 Views)
Background & Aims: In recent decades, the application of tetrazole structures in various fields of medicine and industry has become very important, because they can cause structural and thus functional changes in the proteins. In this article, the effect of a new tetrazole derivative on calf thymus DNA (Ct-DNA) as well as on bovine serum albumin protein (BSA) in the solution was determined using various spectroscopic methods in vitro.
Materials & Methods: The primary, secondary, and tertiary structures of BSA proteins and Ct-DNA were studied using UV-Vis spectroscopy, circular dichroism (CD), and fluorescence spectroscopy, respectively.
Results: The results showed that the optical density of Ct-DNA and BSA were increased in the resukt of interactions with oxindolin-(H1-tetrazol-5-yl) acetonitrile at 260 and 280 nm. The emission spectra of Ct-DNA and BSA decreased dependent to the concentration of oxindolin-(H1-tetrazol-5-yl) acetonitrile, which indicates the binding of oxindolin-(H1-tetrazol-5-yl) acetonitrile to chromophores in Ct-DNA and BSA. Binding of oxindolin-(H1-tetrazol-5-yl) acetonitrile causes a significant increase in ellipticity, circular dichroism of DNA molecules in the regions of 220 and 275 nm, and increase in its negativity in 245 nm, which shows an stronger binding of oxindolin- (H1-tetrazol-5-yl) acetonitrile to Ct-DNA. As the concentration increases, the molar ellipse associated with the alpha helix in the BSA structure becomes more negative in the 220 nm region, which indicates an increase in the amount of irregular coils in the structure of BSA.
Conclusion: The obtained results can provide useful information in the field of designing drugs with tetrazole derivatives with more anti-tumor effect and less side effects.
Full-Text [PDF 967 kb]   (431 Downloads)    
Type of Study: Research | Subject: بیوشیمی

1. Myznikov LV, Roh J, Artamonova TV, Hrabalek A, Koldobskii GI. Tetrazoles: LI. Synthesis of 5-substituted tetrazoles under microwave activation. Russ J Org Chem 2007;43(5): 765-7. [DOI:10.1134/S107042800705020X]
2. Salahuddin M, Singh S, Shantakumar SM. Synthesis and antimicrobial activity of some novel benzo thieno pyrimidines. Rasayan J Chem 2009;2(1): 167-73. [Google Scholar]
3. Sayed Mohamed M, El-Domany RA, Abd El-Hameed RH. Synthesis of certain pyrrole derivatives as antimicrobial agents. Acta Pharmaceutica 2009;59(2): 145-58. [DOI:10.2478/v10007-009-0016-9] [PMID]
4. Sharma S, Sharma MC, Kohli DV. Design; synthesis and pharmacological investigation of some benzimidazole derivatives 4'-(5, 6-substitued-2-trifluoromethyl-benzoimidazol-1-ylmethyl)-biphenyl-2-carboxylic acid as potent antihypertensive agents. J Optoelectron Biomed Mater 2010;2(4): 203-11. [DOI:10.5138/ijdd.2010.0975.0215.02038]
5. Marcaccini S, Torroba T. The use of the Ugi four-component condensation. Nat Protoc 2007;2(3): 632-9. [DOI:10.1038/nprot.2007.71] [PMID]
6. Rajeswaran WG, Labroo RB, Cohen LA, King MM. Synthesis of 5-[(Indol-2-on-3-yl) methyl]-2, 2-dimethyl-1, 3-dioxane-4, 6-diones and Spirocyclopropyloxindole Derivatives. Potential Aldose Reductase Inhibitors. J Org Chem 1999;64(4): 1369-71. [DOI:10.1021/jo981673r]
7. Shanmugam P, Viswambharan B. A Short and Efficient Synthesis of 3-Spiro-α-methylene-γ-butyrolactone Oxindolones from Isomerised Bromo Derivatives of Morita-Baylis-Hillman Adducts. Synlett 2008;2008(18): 2763-8. [DOI:10.1055/s-0028-1083549]
8. Shanthi G, Subbulakshmi G, Perumal PT. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron 2007;63(9): 2057-63. [DOI:10.1016/j.tet.2006.12.042]
9. Olins DE, Olins AL. Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol 2003;4(10): 809-14. [DOI:10.1038/nrm1225] [PMID]
10. Kornberg RD. Structure of chromatin. Annu Rev Biochem 1977;46(1): 931-54. [DOI:10.1146/annurev.bi.46.070177.004435] [PMID]
11. Gentili PL, Ortica F, Favaro G. Static and dynamic interaction of a naturally occurring photochromic molecule with bovine serum albumin studied by UV-visible absorption and fluorescence spectroscopy. J Phys Chem B 2008;112(51): 16793-801. [DOI:10.1021/jp805922g] [PMID]
12. Zhao X-N, Liu Y, Niu L-Y, Zhao C-P. Spectroscopic studies on the interaction of bovine serum albumin with surfactants and apigenin. Spectrochim Acta A Mol Biomol Spectrosc 2012;94: 357-64. [DOI:10.1016/j.saa.2012.02.078] [PMID]
13. Wani TA, Bakheit AH, Ansari MN, Al-Majed A-RA, Al-Qahtani BM, Zargar S. Spectroscopic and molecular modeling studies of binding interaction between bovine serum albumin and roflumilast. Drug Des Devel Ther 2018;12: 2627. [DOI:10.2147/DDDT.S169697] [PMID] [PMCID]
14. Lakowicz JR. Principles of fluorescence spectroscopy: Springer science & business media; 2013. [URL]
15. Månsson R, Hultquist A, Luc S, Yang L, Anderson K, Kharazi S, et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 2007;26(4): 407-19. [DOI:10.1016/j.immuni.2007.02.013] [PMID]
16. Kelly SM. TJ Jess i NC Price. Biochim Biophys Acta 2005;1751: 119-39. [DOI:10.1016/j.bbapap.2005.06.005] [PMID]
17. Freifelder D. Physical biochemistry: applications to biochemistry and molecular biology: Macmillan; 1982. [URL]
18. Roh J, Vávrová K, Hrabálek A. Synthesis and functionalization of 5-substituted tetrazoles. Eur J Org Chem 2012;2012(31): 6101-18. [DOI:10.1002/ejoc.201200469]
19. Malik MA, Wani MY, Al-Thabaiti SA, Shiekh RA. Tetrazoles as carboxylic acid isosteres: chemistry and biology. J Incl Phenom Macrocycl Chem 2014;78(1): 15-37. [DOI:10.1007/s10847-013-0334-x]
20. Herr RJ. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 2002;10(11): 3379-93. [DOI:10.1016/S0968-0896(02)00239-0] [PMID]
21. Patil DR, Deshmukh MB, Dalal DS. Ammonium acetate mediated synthesis of 5-substituted 1H-tetrazoles. J Iran Chem Soc 2012;9(5): 799-803. [DOI:10.1007/s13738-012-0080-9]
22. Eicher, Hauptmann S. The Chemistry of Heterocycles: Wiley VCH; 2003. [DOI:10.1002/352760183X]
23. Li X, Deng S, Fu H. Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution. Corros Sci 2010;52(9): 2786-92. [DOI:10.1016/j.corsci.2010.04.020]
24. Khorsandi K, Rabbani-Chadegani A. Investigation on the chromium oxide interaction with soluble chromatin and histone H1: A spectroscopic study. Int J Biol Macromol 2014;70: 57-63. [DOI:10.1016/j.ijbiomac.2014.06.018] [PMID]
25. Tanwir A, Jahan R, Quadir MA, Kaisar MA, Hossain MK. Spectroscopic studies of the interaction between metformin hydrochloride and bovine serum albumin. Dhaka Univ J Pharm Sci 2012;11(1): 45-9. [DOI:10.3329/dujps.v11i1.12486]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb