Volume 32, Issue 2 (May 2021)                   Studies in Medical Sciences 2021, 32(2): 134-143 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Irani M, Homayouni Tabrizi M, Ardalan T. EVALUATION OF IN VITRO ANTIBACTERIAL AND ANTIOXIDANT ACTIVITY OF NANOEMULSIONS SYNTHESIZED BY ARTEMISIA AUCHERI BOISS ESSENTIAL OIL. Studies in Medical Sciences 2021; 32 (2) :134-143
URL: http://umj.umsu.ac.ir/article-1-5322-en.html
Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran (Corresponding author) , mhomayouni6@gmail.com
Abstract:   (2685 Views)
Background & Aims: Due to the threat to human health with diseases related to oxidative stress and infectious diseases, today the use of natural compounds and changes in them to improve their effectiveness has received much attention. The aim of this study was to evaluate the antioxidant and antimicrobial activity of nanoemulsions prepared from Artemisia aucheri Boiss essential oil (AABEO-NE).
Materials & Methods: The AABEO-NE was synthesized by ultrasound method and formulated with 9 ml of Tween 80, 1 ml of polyethylene glycol, 3 ml of Artemisia essential oil, and 87 ml of distilled water. The antioxidant activities of nanoemulsions were investigated using various biochemical methods such as DPPH (1,1-diphenyl-2-picryl-hydrazyl) and ABTS (2,2-azinobis (3-ethyl benzothiazoline-6-sulfonic acid). Then, the antibacterial activity of nanoemulsion was evaluated by the disk diffusion (DD) method.
Results: The data obtained from this study showed that nanoemulsions synthesized by Artemisia essential oil have a high potential for inhibiting DPPH radicals (IC50 = 80μg / ml) and ABTS (IC50 = 79μg / ml). The existence of a growth inhibition zone (10mm) in the sample treated with AABEO-NE confirmed the antibacterial effects of AABEO-NE
Conclusion: According to the results, AABEO-NE can be used as a safe, natural, and effective antibiotic for bacterial infections caused by S. aureus and also, this formulation can be used due to its high antioxidant effects in the treatment of diseases related to oxidative stress.
 
Full-Text [PDF 720 kb]   (1681 Downloads)    
Type of Study: Research | Subject: بیوشیمی

References
1. Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, et al. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 2013;57(suppl_3):S139-S70. [DOI:10.1093/cid/cit578] [PMID] [PMCID]
2. Nigam A, Gupta D, Sharma A. Treatment of infectious disease: beyond antibiotics. Microbial Res 2014;169(9-10):643-51. [DOI:10.1016/j.micres.2014.02.009] [PMID]
3. Marianne Frieri K, Boutin A. Antibiotic resistance. JInfect 2017;10:369-78. [DOI:10.1016/j.jiph.2016.08.007] [PMID]
4. Sundararajan B, Moola AK, Vivek K, Kumari BR. Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb Pathog 2018;125:475-85. [DOI:10.1016/j.micpath.2018.10.017] [PMID]
5. Singh G, Kapoor I, Singh P, de Heluani CS, de Lampasona MP, Catalan CA. Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food Chem Toxicol 2008;46(10):3295-302. [DOI:10.1016/j.fct.2008.07.017] [PMID]
6. Pavela R, Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Pharmacol Sci 2016;21(12):1000-7. [DOI:10.1016/j.tplants.2016.10.005] [PMID]
7. Asghari G, Jalali M, Sadoughi E. Antimicrobial activity and chemical composition of essential oil from the seeds of Artemisia aucheri Boiss. Jundishapur J Nat. Pharm Prod 2012;7(1):11. [DOI:10.5812/jjnpp.3530] [PMID] [PMCID]
8. Bagheri R, Chaichi M, Mohseni-Saravi M, Amin G, Zahedi G. Grazing affects essential oil compositions of Artemisia sieberi Besser. Pak J Biol Sci: PJBS 2007;10(5):810-3. [DOI:10.3923/pjbs.2007.810.813] [PMID]
9. Behmanesh B, Heshmati G, Mazandarani M, Rezaei M, Ahmadi A, Ghaemi E, et al. Chemical composition and antibacterial activity from essential oil of Artemisia sieberi Besser subsp. Sieberi in North of Iran. Asian J Plant Sci 2007; 6: 562-4. [DOI:10.3923/ajps.2007.562.564]
10. Pavoni L, Benelli G, Maggi F, Bonacucina G. Green nanoemulsion interventions for biopesticide formulations. In: Nano-Biopesticides Today and Future Perspectives Elsevier; 2019. P. 133-60. [DOI:10.1016/B978-0-12-815829-6.00005-X]
11. Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. An Overview of Micro-and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. J Nanomater 2020;10(1):135. [DOI:10.3390/nano10010135] [PMID] [PMCID]
12. Perlatti B, de Souza Bergo PL, Fernandes JB, Forim MR. Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. Insecticides-Development of safer and more effective technologies. IntechOpen; 2013. [DOI:10.5772/53355] [PMID]
13. Khatamian N, Homayouni Tabrizi M, Ardalan P, Yadamani S, Darchini Maragheh A. Synthesis of Carum Carvi essential oil nanoemulsion, the cytotoxic effect, and expression of caspase 3 gene. J Food Biochem 2019;43(8):e12956. [DOI:10.1111/jfbc.12956] [PMID]
14. Khatamian N, Homayouni Tabrizi M, Ardalan P. Effect of carum carvi essential oil nanoemulsion on tubo cancer cells and L929 normal cells and evaluation of antioxidant activity. Stud Med Sci 2019;30(4):315-21. [Google Scholar]
15. Keykhasalar R, Homayouni Tabrizi M, Ardalan P. Antioxidant Property and Bactericidal Activity of Linum usitatissimum Seed Essential Oil Nanoemulsion (LSEO-NE) on Staphylococcus aureus. Int J Infect 2020; 7(2):e101639. [DOI:10.5812/iji.101639]
16. Jin W, Xu W, Liang H, Li Y, Liu S, Li B. Nanoemulsions for food: properties, production, characterization, and applications. Emulsions: Elsevier; 2016. P. 1-36. [DOI:10.1016/B978-0-12-804306-6.00001-5]
17. Hadadi Z, Nematzadeh GA, Ghahari S. A study on the antioxidant and antimicrobial activities in the chloroformic and methanolic extracts of 6 important medicinal plants collected from North of Iran. BMC Chem 2020;14:1-11. [DOI:10.1186/s13065-020-00683-5] [PMID] [PMCID]
18. Alexandre EMC, Lourenço RV, Bittante AMQB, Moraes ICF, do Amaral Sobral PJ. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag Shelf Life2016;10:87-96. [DOI:10.1016/j.fpsl.2016.10.004]
19. Kumar M, Chandel M, Kumar S, Kaur S. Studies on the antioxidant/genoprotective activity of extracts of Koelreuteria paniculata laxm. Am J Biomed Sci 2012;1:177-89. [Google Scholar]
20. Safaei-Ghomi J, Abbasi-Ahd A, Behpour M, Batooli H. Antioxidant activity of the essential oil and metanolic extract of Eucalyptus largiflorens and Eucalyptus intertexta from central Iran. J Essent Oil-Bear Plants 2010;13(3):377-84. [DOI:10.1080/0972060X.2010.10643838]
21. Fathi A, Sahari M, Barzegar M, Naghdi Badi H. Antioxidant activity of Satureja hortensis L. essential oil and its application in safflower oil. J Med Plants 2013 ;1(45):51-67. [Google Scholar]
22. Scur M, Pinto F, Pandini J, Costa W, Leite C, Temponi L. Antimicrobial and antioxidant activity of essential oil and different plant extracts of Psidium cattleianum Sabine. Braz J Biol2016;76(1):101-8. [DOI:10.1590/1519-6984.13714] [PMID]
23. Olmedo R, Ribotta P, Grosso NR. Antioxidant activity of essential oils extracted from Aloysia triphylla and Minthostachys mollis that improve the oxidative stability of sunflower oil under accelerated storage conditions. Eur J Lipid Sci Tech 2018;120(8):1700374. [DOI:10.1002/ejlt.201700374]
24. Shams Moattar F, Sariri R, Giahi M, Yaghmaee P. Essential oil composition and antioxidant activity of Calamintha officinalis Moench. Appl Biotechnol Rep 2018;5(2):55-8. [DOI:10.29252/JABR.05.02.03]
25. Anwer MK, Jamil S, Ibnouf EO, Shakeel F. Enhanced antibacterial effects of clove essential oil by nanoemulsion. J Oleo Sci 2014:ess13213. [DOI:10.5650/jos.ess13213] [PMID]
26. Angioni A, Barra A, Cereti E, Barile D, Coïsson JD, Arlorio M, et al. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J Agric Food Chem 2004;52(11):3530-5. [DOI:10.1021/jf049913t] [PMID]
27. Miresmailli S, Isman MB. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci 2014;19(1):29-35. [DOI:10.1016/j.tplants.2013.10.002] [PMID]
28. Zorzi GK, Caregnato F, Moreira JCF, Teixeira HF, Carvalho ELS. Antioxidant effect of nanoemulsions containing extract of Achyrocline satureioides (Lam) DC-Asteraceae. AAPS PharmSciTech. 2016;17(4):844-50. [DOI:10.1208/s12249-015-0408-8] [PMID]
29. Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci2012;68(2):158-63. [DOI:10.1002/ps.2233] [PMID]
30. Pant M, Dubey S, Patanjali P, Naik S, Sharma S. Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeter Biodegr 2014;91:119-27. [DOI:10.1016/j.ibiod.2013.11.019]
31. Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O. Physicochemical characterization of lemongrass essential oil-alginate nanoemulsions: effect of ultrasound processing parameters. Food Bioproc Tech 2013;6(9):2439-46. [DOI:10.1007/s11947-012-0881-y]
32. Ghosh V, Mukherjee A, Chandrasekaran N. Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti. Asian J Chem 2013;25(Supplementary Issue):S321. [Google Scholar]
33. Pandya S. Nanoemulsion and their antimicrobial activity. Researchgate publications 2015. [Google Scholar]
34. Moraes-Lovison M, Marostegan LF, Peres MS, Menezes IF, Ghiraldi M, Rodrigues RA, et al. Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. LWT 2017;77:233-40. [DOI:10.1016/j.lwt.2016.11.061]
35. Patel A, Ghosh V. Thyme (Thymus vulgaris) Essential Oil-Based Antimicrobial Nanoemulsion Formulation for Fruit Juice Preservation. In:Biotechnological Applications in Human Health. Springer; 2020. P. 107-14. [DOI:10.1007/978-981-15-3453-9_12]
36. Otoni CG, de Moura MR, Aouada FA, Camilloto GP, Cruz RS, Lorevice MV, et al. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll 2014;41:188-94. [DOI:10.1016/j.foodhyd.2014.04.013]
37. Bidgoli RD, Ebrahimabadi A, Heshmati G, Pessarakli M. Antioxidant and antimicrobial activity evaluation and essential oil analysis of Artemisia aucheri Boiss. From Iran Curr Res Chem 2013;5:1-10. [DOI:10.3923/crc.2013.1.10]
38. Seibert JB, Bautista-Silva JP, Amparo TR, Petit A, Pervier P, dos Santos Almeida JC, et al. Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chem 2019;287:61-7. [DOI:10.1016/j.foodchem.2019.02.078] [PMID]
39. Darchini Maragheh A, Homayouni Tabrizi M, Karimi E. Evaluation of antioxidant and cytotoxic effects of nanoemulsion of cherry kernel oil on A549 lung cancer and HUVEC normal cells. Jundishapur J Health Sci 2019;18(1):71-9. [URL]
40. Ha TVA, Kim S, Choi Y, Kwak H-S, Lee SJ, Wen J, et al. Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem 2015;178:115-21. [DOI:10.1016/j.foodchem.2015.01.048] [PMID]
41. Allahghadri T, Rasooli I, Owlia P, Nadooshan MJ, Ghazanfari T, Taghizadeh M, et al. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J Food Sci 2010;75(2):H54-H61. [DOI:10.1111/j.1750-3841.2009.01467.x] [PMID]
42. Rinaldi F, Hanieh PN, Longhi C, Carradori S, Secci D, Zengin G, et al. Neem oil nanoemulsions: characterisation and antioxidant activity. J Enzyme Inhib Med Chem 2017;32(1):1265-73. [DOI:10.1080/14756366.2017.1378190] [PMID] [PMCID]
43. Gledovic A, Janosevic Lezaic A, Krstonosic V, Djokovic J, Nikolic I, Bajuk-Bogdanovic D, et al. Low-energy nanoemulsions as carriers for red raspberry seed oil: Formulation approach based on Raman spectroscopy and textural analysis, physicochemical properties, stability and in vitro antioxidant/biological activity. PLoS One 2020;15(4):e0230993. [DOI:10.1371/journal.pone.0230993] [PMID] [PMCID]
44. Balasubramani S, Rajendhiran T, Moola AK, Diana RKB. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res Int 2017;24(17):15125-33. [DOI:10.1007/s11356-017-9118-y] [PMID]
45. Hasssanzadeh H, Alizadeh M, Bari MR. Formulation of garlic oil-in-water nanoemulsion: antimicrobial and physicochemical aspects. IET nanobiotechnol 2018;12(5):647-52. [DOI:10.1049/iet-nbt.2017.0104] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb