Volume 33, Issue 3 (June 2022)                   Studies in Medical Sciences 2022, 33(3): 200-211 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5227-en.html
Faculty of Nutrition and Food Science, Tabriz University of medical science, Tabriz, Iran (Corresponding Author) , mosazadeh.vali05@gmail.com
Abstract:   (656 Views)
Traumatic brain injury (TBI) is defined as a change in brain function such as confusion, changes in consciousness, coma, epileptic seizures, or damage to emotional or motor centers caused by any blow to the head or factors that increase intracranial pressure. The most common causes of TBI are road accidents, falls from heights, and injuries during exercise. A precise and well-known mechanism for the pathogenesis of TBI has not yet been determined. Some suggested mechanisms for it included axon damage due to trauma, separation of tau protein from microtubules, increased pro-inflammatory cytokines (IL-1ẞ and IL-6), and altered neurotransmitter synthesis. There is no specific treatment recommendation for the disease by the FDA. The aim of this study was to analyze the mechanisms involved in the pathogenesis of brain trauma and the role of vitamin D in preventing and controlling the resulting injuries.  In this review research, electronic databases such as PubMed, Google Scholar, Scopus, and SID were searched to extract information.
Vitamin D is a fat-soluble vitamin that easily crosses the blood-brain barrier (BBB) and acts through nuclear and membrane receptors. Because of its role in controlling inflammatory processes, improving the growth, repairing the nerve cells, and preventing the progression of neuronal induction pathways (Taupathy, etc.), vitamin D could be recommended for the treatment of this disease. The results of observations to date have shown that vitamin D can be effective in preventing the progression of traumatic brain injuries.
Full-Text [PDF 552 kb]   (245 Downloads)    
Type of Study: Review article | Subject: Nutrition

1. Helps YL, Henley G, Harrison JE. Hospital separations due to traumatic brain injury, Australia 2004-05: Australian Institute of Health and Welfare Adelaide (AUST); 2008. [URL]
2. Huguenard AL, Miller BA, Sarda S, Capasse M, Reisner A, Chern JJ. Mild traumatic brain injury in children is associated with a low risk for posttraumatic seizures. J Neurosurg Pediatr 2016;17(4):476-82. [DOI:10.3171/2015.7.PEDS14723] [PMID]
3. Reza A, Riahi E, Daneshi A, Golchini E. The incidence of traumatic brain injury in Tehran, Iran. Brain Injury 2018;32(4):487-92. [DOI:10.1080/02699052.2018.1429658] [PMID]
4. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehab 2006;21(5):375-8. [DOI:10.1097/00001199-200609000-00001] [PMID]
5. Shi H-Y, Hwang S-L, Lee K-T, Lin C-L. Temporal trends and volume-outcome associations after traumatic brain injury: a 12-year study in Taiwan. J Neurosurg 2013;118(4):732-8. [DOI:10.3171/2012.12.JNS12693] [PMID]
6. Gardner RC, Burke JF, Nettiksimmons J, Goldman S, Tanner CM, Yaffe K. Traumatic brain injury in later life increases risk for P arkinson disease. Ann Neurol 2015;77(6):987-95. [DOI:10.1002/ana.24396] [PMID] [PMCID]
7. Tanriverdi F, Kelestimur F. Pituitary dysfunction following traumatic brain injury: clinical perspectives. Neuropsychiatr Dis Treat 2015;11:1835. [DOI:10.2147/NDT.S65814] [PMID] [PMCID]
8. Glushakova OY, Glushakov AO, Borlongan CV, Valadka AB, Hayes RL, Glushakov AV. Role of Caspase-3-Mediated Apoptosis in Chronic Caspase-3-Cleaved Tau Accumulation and Blood-Brain Barrier Damage in the Corpus Callosum after Traumatic Brain Injury in Rats. J Neurotrauma 2018;35(1):157-73. [DOI:10.1089/neu.2017.4999] [PMID]
9. Manley GT, Mac Donald CL, Markowitz AJ, Stephenson D, Robbins A, Gardner RC, et al. The Traumatic Brain Injury Endpoints Development (TED) initiative: progress on a public-private regulatory collaboration to accelerate diagnosis and treatment of traumatic brain injury. J Neurotrauma 2017;34(19):2721-30. [DOI:10.1089/neu.2016.4729] [PMID] [PMCID]
10. Tasker RC. Neurocritical care and traumatic brain injury. Indian J Pediatr 2001;68(3):257-66. [DOI:10.1007/BF02723203] [PMID]
11. Lucke-Wold BP, Logsdon AF, Nguyen L, Eltanahay A, Turner RC, Bonasso P, et al. Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr Neurosci 2018;21(2):79-91. [DOI:10.1080/1028415X.2016.1236174] [PMID] [PMCID]
12. Kalueff A, Minasyan A, Keisala T, Kuuslahti M, Miettinen S, Tuohimaa P. The vitamin D neuroendocrine system as a target for novel neurotropic drugs. CNS Neurolog Dis Drug Targets 2006;5(3):363-71. https://doi.org/10.2174/187152706777452209 [DOI:10.2174/187152706784111506]
13. Lawrence DW, Sharma B. A review of the neuroprotective role of vitamin D in traumatic brain injury with implications for supplementation post-concussion. Brain Injury 2016;30(8):960-8. [DOI:10.3109/02699052.2016.1147081] [PMID]
14. Greig NH, Tweedie D, Rachmany L, Li Y, Rubovitch V, Schreiber S, et al. Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury. Alzheimer Dementia 2014;10:S62-S75. [DOI:10.1016/j.jalz.2013.12.011] [PMID] [PMCID]
15. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008;7(8):728-41. [DOI:10.1016/S1474-4422(08)70164-9] [PMID]
16. Chiu C-C, Liao Y-E, Yang L-Y, Wang J-Y, Tweedie D, Karnati HK, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Method 2016;272:38-49. [DOI:10.1016/j.jneumeth.2016.06.018] [PMID] [PMCID]
17. Lozano D, Gonzales-Portillo GS, Acosta S, de la Pena I, Tajiri N, Kaneko Y, et al. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities. Neuropsych Dis Treat 2015;11:97. [DOI:10.2147/NDT.S65815] [PMID] [PMCID]
18. Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochimica Biophysica Acta 2012;1822(5):675-84. [DOI:10.1016/j.bbadis.2011.10.017] [PMID] [PMCID]
19. Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 2015;72(3):355-62. [DOI:10.1001/jamaneurol.2014.3558] [PMID] [PMCID]
20. Chio C-C, Lin H-J, Tian Y-F, Chen Y-C, Lin M-T, Lin C-H, et al. Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. J Neuroinflam 2017;14(1):90. [DOI:10.1186/s12974-017-0867-9] [PMID] [PMCID]
21. Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol Sci 2015;36(7):471-80. [DOI:10.1016/j.tips.2015.04.003] [PMID] [PMCID]
22. Wang J, Ma MW, Dhandapani KM, Brann DW. Regulatory role of NADPH oxidase 2 in the polarization dynamics and neurotoxicity of microglia/macrophages after traumatic brain injury. Free Radical Biol Med 2017;113:119-31. [DOI:10.1016/j.freeradbiomed.2017.09.017] [PMID]
23. Eyles D, Feron F, Cui X, Kesby J, Harms L, Ko P, et al. Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinol 2009;34:S247-S57. [DOI:10.1016/j.psyneuen.2009.04.015] [PMID]
24. Ahmadzadeh H, Smith DH, Shenoy VB. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model. Biophysical J 2014;106(5):1123-33. [DOI:10.1016/j.bpj.2014.01.024] [PMID] [PMCID]
25. Tran HT, LaFerla FM, Holtzman DM, Brody DL. Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J Neurosci 2011;31(26):9513-25. [DOI:10.1523/JNEUROSCI.0858-11.2011] [PMID] [PMCID]
26. Albayram O, Kondo A, Mannix R, Smith C, Tsai C-Y, Li C, et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nature Comm 2017;8(1):1-17. [DOI:10.1038/s41467-017-01068-4] [PMID] [PMCID]
27. Collins-Praino LE, Corrigan F. Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury? Brain Behav Immun 2017;60:369-82. [DOI:10.1016/j.bbi.2016.09.027] [PMID]
28. Alonso AD, Di Clerico J, Li B, Corbo CP, Alaniz ME, Grundke-Iqbal I, et al. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biolog Chem 2010;285(40):30851-60. [DOI:10.1074/jbc.M110.110957] [PMID] [PMCID]
29. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Reports 2012;2:700. [DOI:10.1038/srep00700] [PMID] [PMCID]
30. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nature Neurosci 2016;19(8):1085. [DOI:10.1038/nn.4328] [PMID] [PMCID]
31. Liu S, Han S, Dai Q, Li S, Li J. BICAO-induced ischaemia caused depressive-like behaviours and caspase-8/-9-dependent brain regional neural cell apoptosis in mice. Stroke Vasc Neurol 2018;3(1):1-8. [DOI:10.1136/svn-2017-000109] [PMID] [PMCID]
32. Corsellis J, Bruton C, Freeman-Browne D. The aftermath of boxing. Psychological medicine. 1973;3(3):270-303. [DOI:10.1017/S0033291700049588] [PMID]
33. Medina M, Hernández F, Avila J. New features about tau function and dysfunction. Biomolecules 2016;6(2):21. [DOI:10.3390/biom6020021] [PMID] [PMCID]
34. Petraglia AL, Plog BA, Dayawansa S, Dashnaw ML, Czerniecka K, Walker CT, et al. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int 2014;5. [DOI:10.4103/2152-7806.147566] [PMID] [PMCID]
35. Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisruptive axonal injury: a review. Journal of neurotrauma. 1997;14(7):419-40. [DOI:10.1089/neu.1997.14.419] [PMID]
36. Salama M, Mohamed WM. Tau protein as a biomarker for asphyxia: A possible forensic tool? App Transl Genomics 2016;9:20-2. [DOI:10.1016/j.atg.2016.03.001] [PMID] [PMCID]
37. Sy M, Kitazawa M, Medeiros R, Whitman L, Cheng D, Lane TE, et al. Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Path 2011;178(6):2811-22. [DOI:10.1016/j.ajpath.2011.02.012] [PMID] [PMCID]
38. Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 2010;68(1):19-31. [DOI:10.1016/j.neuron.2010.08.023] [PMID] [PMCID]
39. Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R. p53 is upregulated in Alzheimer's disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett 2007;418(1):34-7. [DOI:10.1016/j.neulet.2007.03.026] [PMID] [PMCID]
40. Härtl R, Gerber LM, Ni Q, Ghajar J. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg 2008;109(1):50-6. [DOI:10.3171/JNS/2008/109/7/0050] [PMID]
41. Banerjee A, Khemka VK, Ganguly A, Roy D, Ganguly U, Chakrabarti S. Vitamin D and Alzheimer's disease: neurocognition to therapeutics. Int J Alzh Dis 2015;2015. [DOI:10.1155/2015/192747] [PMID] [PMCID]
42. Colón YM. Vitamin D Clinical Relevance in the Recovery From Traumatic Brain Injury Among the Military Population. 2016. [Google Scholar]
43. Alderson P, Roberts I. Corticosteroids in acute traumatic brain injury: systematic review of randomised controlled trials. Br Med J 1997;314(7098):1855. [DOI:10.1136/bmj.314.7098.1855] [PMID] [PMCID]
44. Soltani Z, Khaksari M, Shahrokhi N, Nakhai N, Shibani V. Cerebral edema changes and neurological consequences after experimental stroke with combined use of estrogen and progesterone. Iran J Endocr Metabol 2008;10(6):629-38. [URL]
45. Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proceed Nat Acad Sci 2010;107(50):21830-5. [DOI:10.1073/pnas.0912793107] [PMID] [PMCID]
46. Konturek S, Konturek P, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 2004;55(2):137-54. [Google Scholar]
47. Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. Plos One 2013;8(3). [DOI:10.1371/journal.pone.0058725] [PMID] [PMCID]
48. Yang J, Ou-Yang J, Huang J. Low serum vitamin D levels increase the mortality of cardiovascular disease in older adults: A dose-response meta-analysis of prospective studies. Medicine 2019;98(34). [DOI:10.1097/MD.0000000000016733] [PMID] [PMCID]
49. Gianfrancesco MA, Stridh P, Rhead B, Shao X, Xu E, Graves JS, et al. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology 2017;88(17):1623-9. [DOI:10.1212/WNL.0000000000003849] [PMID] [PMCID]
50. Yang K, Chen J, Li X, Zhou Y. Vitamin D concentration and risk of Alzheimer disease: A meta-analysis of prospective cohort studies. Medicine 2019;98(35). [DOI:10.1097/MD.0000000000016804] [PMID] [PMCID]
51. Murri MB, Respino M, Masotti M, Innamorati M, Mondelli V, Pariante C, et al. Vitamin D and psychosis: mini meta-analysis. Schizophr Res 2013;150(1):235-9. [DOI:10.1016/j.schres.2013.07.017] [PMID]
52. Sommer I, Griebler U, Kien C, Auer S, Klerings I, Hammer R, et al. Vitamin D deficiency as a risk factor for dementia: a systematic review and meta-analysis. BMC Geriatr 2017;17(1):16. [DOI:10.1186/s12877-016-0405-0] [PMID] [PMCID]
53. El-Atifi M, Dreyfus M, Berger F, Wion D. Expression of CYP2R1 and VDR in human brain pericytes: the neurovascular vitamin D autocrine/paracrine model. Neuroreport 2015;26(5):245-8. [DOI:10.1097/WNR.0000000000000328] [PMID]
54. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J Chem Neuroanat 2005;29(1):21-30. [DOI:10.1016/j.jchemneu.2004.08.006] [PMID]
55. Al-Harbi AN, Khan KM, Rahman A. Developmental vitamin D deficiency affects spatial learning in wistar rats. J Nutr 2017;147(9):1795-805. [Google Scholar]
56. Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S. The role of vitamin D in brain health: a mini literature review. Cureus 2018;10(7). [DOI:10.7759/cureus.2960]
57. Nissou M-F, Guttin A, Zenga C, Berger F, Issartel J-P, Wion D. Additional clues for a protective role of vitamin D in neurodegenerative diseases: 1, 25-dihydroxyvitamin D3 triggers an anti-inflammatory response in brain pericytes. J Alzh Dis 2014;42(3):789-99. [DOI:10.3233/JAD-140411] [PMID]
58. Khairy EY, Attia MM. Protective effects of vitamin D on neurophysiologic alterations in brain aging: role of brain-derived neurotrophic factor (BDNF). Nutr Neurosci 2019:1-10. [DOI:10.1080/1028415X.2019.1665854] [PMID]
59. Brown J, Bianco JI, McGrath JJ, Eyles DW. 1, 25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 2003;343(2):139-43. [DOI:10.1016/S0304-3940(03)00303-3] [PMID]
60. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D. New clues about vitamin D functions in the nervous system. Trends in Endocrinology & Metabolism. 2002;13(3):100-5. [DOI:10.1016/S1043-2760(01)00547-1] [PMID]
61. Baig S, Khan AN. Vitamin D Therapy and Relief of Pain. J Coll Physic Surge Pakistan 2017;27(10):595-6. [Google Scholar]
62. Herac M, Niederle B, Raderer M, Krebs M, Kaserer K, Koperek O. Expression of somatostatin receptor 2A in medullary thyroid carcinoma is associated with lymph node metastasis. Apmis 2016;124(10):839-45. [DOI:10.1111/apm.12584] [PMID]
63. Sloka S, Zhornitsky S, Silva C, Metz LM, Yong VW. 1, 25-Dihydroxyvitamin D3 protects against immune-mediated killing of neurons in culture and in experimental autoimmune encephalomyelitis. Plos One 2015;10(12). [DOI:10.1371/journal.pone.0144084] [PMID] [PMCID]
64. Mizwicki MT, Menegaz D, Zhang J, Barrientos-Durán A, Tse S, Cashman JR, et al. Genomic and nongenomic signaling induced by 1α, 25 (OH) 2-vitamin D 3 promotes the recovery of amyloid-β phagocytosis by Alzheimer's disease macrophages. J Alzh Dis 2012;29(1):51-62. [DOI:10.3233/JAD-2012-110560] [PMID]
65. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj 2015;29(10):1165-74. [DOI:10.3109/02699052.2015.1035330] [PMID] [PMCID]
66. Briones TL, Darwish H. Retraction notice to "Decrease In Age-Related Tau Hyperphosphorylation And Cognitive Improvement Following Vitamin D Supplementation Are Associated With Modulation Of Brain Energy Metabolism And Redox State" Neuroscience 262 (2014) 143-155. Elsevier; 2014. [DOI:10.1016/j.neuroscience.2015.05.009] [PMID] [PMCID]
67. Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J 2015;29(6):2207-22. [DOI:10.1096/fj.14-268342] [PMID]
68. Annweiler C, Montero-Odasso M, Schott AM, Berrut G, Fantino B, Beauchet O. Fall prevention and vitamin D in the elderly: an overview of the key role of the non-bone effects. J Neuroeng Rehabilit 2010;7(1):50. [DOI:10.1186/1743-0003-7-50] [PMID] [PMCID]
69. Aoki K, Sakuma M, Endo N. The impact of exercise and vitamin D supplementation on physical function in community-dwelling elderly individuals: A randomized trial. J Orthop Sci 2018;23(4):682-7. [DOI:10.1016/j.jos.2018.03.011] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb