Volume 31, Issue 11 (February 2021)                   Studies in Medical Sciences 2021, 31(11): 893-881 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbanloo F, Jafarnezhadgero A, Fatollahi A. INVESTIGATING THE EFFECT OF 8 WEEKS OF CORRECTIVE EXERCISE WITH AN ELASTIC BAND ON THE FREQUENCY SPECTRUM OF GROUND REACTION FORCES IN YOUNG BOYS WITH GENU VALGUM DURING RUNNING: A RANDOMIZED CLINICAL TRIAL STUDY. Studies in Medical Sciences 2021; 31 (11) :893-881
URL: http://umj.umsu.ac.ir/article-1-5169-en.html
Associate Prof., Dept. of Sport Management and Biomechanics, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran (Corresponding Author) , amiralijafarnezhad@gmail.com
Abstract:   (3037 Views)
Background & Aims: Increasing the angle of the valgus by making changes to the lower limbs can cause changes in the center of gravity of the body relative to the level of reliance and limit balance control. The aim of this study was to investigate the effects of a corrective exercise course using an elastic band on the frequency spectrum of ground reaction forces in young boys with genu valgum during running.
Materials & Methods: The present study was a clinical trial. 24 male students with genu valgum (20-30 years) were randomly assigned to control and experimental groups. Corrective exercises were performed for 8 weeks using an elastic band for the experimental group. Ground reaction forces were recorded by the Bertec force plate. For statistical analysis, SPSS V21 software and analysis of repeated measure ANOVA were used at a significance level of 0.05.
Results: The results of the present study showed a decrease in the median frequency in the anterior-posterior direction of the experimental group during the post-test compared to the pre-test (p = 0.025; d = 3.921). Also, in the experimental group, the frequency band component showed a significant decrease in anterior-posterior direction during the post-test compared to pre-test (p = 0.028; d = 3.843).
Conclusion: Due to the reduction in median frequency, it can be concluded that the corrective exercises used were able to reduce the incoming forces in the anterior-posterior direction. With the reduction of the frequency band during corrective exercises, the participation and activity of motor performance have also decreased.
Full-Text [PDF 702 kb]   (1196 Downloads)    
Type of Study: Research | Subject: Medical Physics

References
1. Van Gheluwe B, Kirby KA, Hagman F. Effects of simulated genu valgum and genu varum on ground reaction forces and subtalar joint function during gait. J Am Podiatr Med Assoc. 2005;95(6):531-41. [DOI:10.7547/0950531] [PMID]
2. Sundaram B, Doshi M, Pandian JS. Postural stability during seven different standing tasks in persons with chronic low back pain-A cross-sectional study. Indian J Physiother Occup Ther . 2012;6(2):22-7.
3. Cote KP, Brunet ME, II BMG, Shultz SJ. Effects of pronated and supinated foot postures on static and dynamic postural stability. J Athl Train. 2005;40(1):41. [PMID] [PMCID]
4. Johnson F, Leitl S, Waugh W. The distribution of load across the knee. A comparison of static and dynamic measurements. J Bone Joint Surg Am. 1980;62(3):346-9. [DOI:10.1302/0301-620X.62B3.7410467] [PMID]
5. Prakash J, Boruah T, Mehtani A, Chand S, Lal H. Experience of supracondylar cheveron osteotomy for genu valgum in 115 adolescent knees. J Clin Orthop Trauma. 2017;8(3):285-92. [DOI:10.1016/j.jcot.2017.05.017] [PMID] [PMCID]
6. Rabiei M, Jafarnejhad-GroT, Binabaji H, Hosseininejad E, Anbarian M. Assessment of postural response after sudden perturbation in subjects with genu valgum. J Shahrekord Univ Med Sci. 2012; 14(2): 90-100. [Persian]. [URL]
7. Hayashi D, Englund M, Roemer FW, Niu J, Sharma L, Felson DT, et al. Knee malalignment is associated with an increased risk for incident and enlarging bone marrow lesions in the more loaded compartments: the MOST study. Osteoarthr Cartil. 2012;20(11):1227-33. [DOI:10.1016/j.joca.2012.07.020] [PMID] [PMCID]
8. Namavarian N, Rezasoltani A, Rekabizadeh M. A study on the function of the knee muscles in genu varum and genu valgum. J Mod Rehab. 2014;8(3):1-9. [URL]
9. McWalter EJ, Cibere J, MacIntyre NJ, Nicolaou S, Schulzer M, Wilson D. Relationship between varus-valgus alignment and patellar kinematics in individuals with knee osteoarthritis. J Bone Joint Surg. 2007;89(12):2723-31. [DOI:10.2106/JBJS.F.01016] [PMID]
10. Cahue S, Dunlop D, Hayes K, Song J, Torres L, Sharma LJA, et al. Varus-valgus alignment in the progression of patellofemoral osteoarthritis. Arthritis Rheum. 2004;50(7):2184-90. [DOI:10.1002/art.20348] [PMID]
11. Mizuno Y, Kumagai M, Mattessich SM, Elias JJ, Ramrattan N, Cosgarea AJ, et al. Q-angle influences tibiofemoral and patellofemoral kinematics. J Orthop Res. 2001;19(5):834-40. [DOI:10.1016/S0736-0266(01)00008-0]
12. Vaishya R, Shah M, Agarwal AK, Vijay VJ. Growth modulation by hemi epiphysiodesis using eight-plate in Genu valgum in Paediatric population. J Clin Orthop Trauma. 2018;9(4):327-33. [DOI:10.1016/j.jcot.2017.11.004] [PMID] [PMCID]
13. Staheli LT, Corbett M, Wyss C, King H. Lower-extremity rotational problems in children. Normal values to guide management. J Bone Joint Surg Am. 1985;67(1):39-47. [DOI:10.2106/00004623-198567010-00006] [PMID]
14. Salenius P, Vankka E. The development of the tibiofemoral angle in children. J Bone Joint Surg Am. 1975;57(2):259-61. [DOI:10.2106/00004623-197557020-00021] [PMID]
15. Kling JT, Hensinger RN. Angular and torsional deformities of the lower limbs in children. Clin Orthop Relat Res. 1983(176):136-47. [DOI:10.1097/00003086-198306000-00018]
16. 16 Murphy SB. Tibial osteotomy for genu varum. Indications, preoperative planning, and technique. Orthop Clin North Am. 1994;25(3):477-82. [DOI:10.1016/S0030-5898(20)31930-1]
17. Robertson G, Caldwell G, Hamill J, Kamen G, Whittlesey S. Research methods in biomechanics, 2E: Human Kinetics; 2013.pp:25-105. [DOI:10.5040/9781492595809]
18. ValizadeOrang A, Jafarnezhadgero A, Ghane G, Ghorbanloo F. The effect of using a knee brace on the ground reaction forces, impulse, loading rate and free moment during landing in athletes with anterior cruciate ligament injuries. Anesth Pain Med. 2019;9(4):66-77. [URL]
19. Valizade-Orang A, Siahkoohian M, Jafarnezhadgero A, Ghorbanlou F. The Effect of Long-Term Use of Motion Control Shoes on the Ground Reaction Force Components during Running in Runners with Excessive Pronated Feet. Iran Rehabil J. 2019;6(2):48-55. [URL]
20. Dammerer D, Giesinger JM, Biedermann R, Haid C, Krismer M, Liebensteiner M. Effect of knee brace type on braking response time during automobile driving. Arthroscopy: Arthroscopy. 2015;31(3):404-9. [DOI:10.1016/j.arthro.2014.09.003] [PMID]
21. Jafarnezhadgero A, Ghorbanlou F, Majlesi M. The Effects of a Period of Corrective Exercise Training Program on Running Ground Reaction Forces in Children with Genu Varum: A Trial Study. J Rafsanjan Univ. 2019;17(10):937-50. [URL]
22. Mohammadi V, Letafatkar A, Sadeghi H, Jafarnezhadgero A, Hilfiker R. The effect of motor control training on kinetics variables of patients with non-specific low back pain and movement control impairment: Prospective observational study. J Bodyw Mov Ther. 2017;21(4):1009-16. [DOI:10.1016/j.jbmt.2016.12.009] [PMID]
23. Ruivo R, Carita A, Pezarat-Correia P. The effects of training and detraining after an 8 month resistance and stretching training program on forward head and protracted shoulder postures in adolescents: randomised controlled study. Man Ther. 2016;21:76-82. [DOI:10.1016/j.math.2015.05.001] [PMID]
24. Aktug ZB. Do the exercises performed with a theraband have an effect on knee muscle strength balances? J Back Musculoskelet Rehab. 2019(Preprint):1-7. [DOI:10.3233/BMR-181217] [PMID]
25. McMaster DT, Cronin J, McGuigan M. Forms of variable resistance training. J Strength Cond Res. 2009;31(1): 50-64.‏ [DOI:10.1519/SSC.0b013e318195ad32]
26. Jafarnezhadgero A, Madadi-Shad M, McCrum C, Karamanidis K. Effects of Corrective Training on Drop Landing Ground Reaction Force Characteristics and Lower Limb Kinematics in Older Adults With Genu Valgus: A Randomized Controlled Trial. J Aging Phys Act . 2019;27(1):9-17. [DOI:10.1123/japa.2017-0315] [PMID]
27. Barrios JA, Heitkamp CA, Smith BP, Sturgeon MM, Suckow DW, Sutton CR. Three-dimensional hip and knee kinematics during walking, running, and single-limb drop landing in females with and without genu valgum. Clin Biomech. 2016;31:7-11. [DOI:10.1016/j.clinbiomech.2015.10.008] [PMID]
28. Nyland J, Caborn D. Physiological coxa varus-genu valgus influences internal knee and ankle joint moments in females during crossover cutting. Knee Surg Sports Traumatol Arthrosc. 2004;12(4):285-93. [DOI:10.1007/s00167-003-0430-3] [PMID]
29. Jafarnezhadgero AA, Shad MM, Majlesi M, Granacher U. A comparison of running kinetics in children with and without genu varus: A cross sectional study. PloS one. 2017;12(9):e0185057. [DOI:10.1371/journal.pone.0185057] [PMID] [PMCID]
30. Association WM. " Ethical principles for medical research involving human subjects," Declaration of Helsinki. http://www wma net/e/policy/b3 htm. 2004. [URL]
31. Willwacher S, Goetze I, Fischer KM, Brüggemann G-P. The free moment in running and its relation to joint loading and injury risk. Footwear Sci. 2016;8(1):1-11. [DOI:10.1080/19424280.2015.1119890]
32. Andersen LL, Andersen CH, Mortensen OS, Poulsen OM, Bjørnlund IBT, Zebis MK. Muscle activation and perceived loading during rehabilitation exercises: comparison of dumbbells and elastic resistance. Phys Ther. 2010;90(4):538-49. [DOI:10.2522/ptj.20090167] [PMID]
33. Becker J. Effectiveness of the StreetStrider as an exercise modality for healthy adults 2011. PhD Thesis. [Google Scholar]
34. Page P, Ellenbecker TS. Strength band training: Human Kinetics Publishers; 2019.pp: 30-85. [URL]
35. Lagally KM, Robertson RJ. Construct validity of the OMNI resistance exercise scale. J Strength Cond Res. 2006;20(2):252. https://doi.org/10.1519/R-17224.1 [DOI:10.1519/00124278-200605000-00003] [PMID]
36. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11):S52-S69. [DOI:10.1097/00002060-200211001-00007] [PMID]
37. Kamonseki DH, Gonçalves GA, Liu CY, Júnior IL. Effect of stretching with and without muscle strengthening exercises for the foot and hip in patients with plantar fasciitis: A randomized controlled single-blind clinical trial. Man Ther. 2016;23:76-82. https://doi.org/10.1016/j.math.2016.02.003 [DOI:10.1016/j.math.2015.10.006]
38. Farahpour N, Jafarnezhad A, Damavandi M, Bakhtiari A, Allard P. Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation. J Biomech. 2016;49(9):1705-10. [DOI:10.1016/j.jbiomech.2016.03.056] [PMID]
39. Winter DA. Biomechanics and motor control of human movement: John Wiley & Sons; 2009. [DOI:10.1002/9780470549148]
40. White R, Agouris I, Fletcher E. Harmonic analysis of force platform data in normal and cerebral palsy gait. Clin Biomech. 2005;20(5):508-16. [DOI:10.1016/j.clinbiomech.2005.01.001] [PMID]
41. Wurdeman SR, Huisinga JM, Filipi M, Stergiou N. Multiple sclerosis affects the frequency content in the vertical ground reaction forces during walking. Clin Biomech. 2011;26(2):207-12. [DOI:10.1016/j.clinbiomech.2010.09.021] [PMID] [PMCID]
42. McGrath D, Judkins TN, Pipinos II, Johanning JM, Myers SA. Peripheral arterial disease affects the frequency response of ground reaction forces during walking. Clin Biomech. 2012;27(10):1058-63. [DOI:10.1016/j.clinbiomech.2012.08.004] [PMID] [PMCID]
43. Schneider E, Chao E. Fourier analysis of ground reaction forces in normals and patients with knee joint disease. J Biomech. 1983;16(8):591-601. [DOI:10.1016/0021-9290(83)90109-4]
44. Cohen J. Statistical power analysis for the behavior science. Lawrance Eribaum Association. 1988.
45. Monteiro M, Gabriel R, Aranha J, e Castro MN, Sousa M, Moreira M. Influence of obesity and sarcopenic obesity on plantar pressure of postmenopausal women. Clin Biomech. 2010;25(5):461-7. [DOI:10.1016/j.clinbiomech.2010.01.017] [PMID]
46. Mongashti Joni, Yosef, et al. "Effect of Genu Varum Deformity on Gluteus Medius Muscle Activity and Postural Control During Single-Leg Jump-Landing." Physical Treatments-Specific Physical Therapy Journal 7.2 (2017): 79-88.‏ [DOI:10.32598/ptj.7.2.79]
47. Daneshmandi H, Alizadeh M, Gharakhanlou R. The Institute of Physical Education, Science S. Corrective Action: Detect and Prescribing Practices. 2005:31-95.
48. Samadi M, Rajabi RJT, Iran: University of Tehran. Laboratory Manual Motion Correction. 2009:65-7. [URL]
49. Brouwer G, Tol AV, Bergink A, Belo J, Bernsen R, Reijman M, et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 2007;56(4):1204-11. [DOI:10.1002/art.22515] [PMID]
50. Eckstein F, Wirth W, Hudelmaier M, Stein V, Lengfelder V, Cahue S, et al. Patterns of femorotibial cartilage loss in knees with neutral, varus, and valgus alignment. Arthritis Care Res. 2008;59(11):1563-70. [DOI:10.1002/art.24208] [PMID]
51. Felson DT, Niu J, Gross KD, Englund M, Sharma L, Cooke TDV, et al. Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum. 2013;65(2):355-62. [DOI:10.1002/art.37726] [PMID] [PMCID]
52. Nguyen A-D, Shultz SJ, Schmitz RJ, Luecht RM, Perrin DH. A preliminary multifactorial approach describing the relationships among lower extremity alignment, hip muscle activation, and lower extremity joint excursion. J Athl Train. 2011;46(3):246-56. [DOI:10.4085/1062-6050-46.3.246] [PMID] [PMCID]
53. Macrum E, Bell DR, Boling M, Lewek M, Padua D. Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and muscle-activation patterns during a squat. J Sport Rehabil. 2012;21(2):144-50. [DOI:10.1123/jsr.21.2.144] [PMID]
54. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930-5. [DOI:10.1002/jor.1100130618] [PMID]
55. Zeller BL, McCrory JL, Ben Kibler W, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449-56. [DOI:10.1177/03635465030310032101] [PMID]
56. Mehr SMA, Jafarnezhadgero A, Salari-Esker F, Zago M. Acute effect of foot orthoses on frequency domain of ground reaction forces in male children with flexible flat feet during walking. The Foot. 2018, 37: 77-84. [DOI:10.1016/j.foot.2018.05.003] [PMID]
57. Barrios JA, Higginson JS, Royer TD, Davis IS. Static and dynamic correlates of the knee adduction moment in healthy knees ranging from normal to varus-aligned. Clin Biomech. 2009;24(10):850-4. [DOI:10.1016/j.clinbiomech.2009.07.016] [PMID] [PMCID]
58. Nyland J, Smith S, Beickman K, Armsey T, Caborn DN. Frontal plane knee angle affects dynamic postural control strategy during unilateral stance. Med Sci Sports Exerc. 2002;34(7):1150-7. [DOI:10.1097/00005768-200207000-00016] [PMID]
59. Stergiou N, Giakas G, Byrne JE, Pomeroy V. Frequency domain characteristics of ground reaction forces during walking of young and elderly females. Clin Biomech. 2002;17(8):615-7. [DOI:10.1016/S0268-0033(02)00072-4]
60. Hunt MA, Birmingham TB, Giffin JR, Jenkyn TR. Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis. J Biomech. 2006;39(12):2213-20. [DOI:10.1016/j.jbiomech.2005.07.002] [PMID]
61. Sharland M, Kendall H, Yeates D, Randall A, Hughes G, Glasziou P, et al. Antibiotic prescribing in general practice and hospital admissions for peritonsillar abscess, mastoiditis, and rheumatic fever in children: time trend analysis. Bmj. 2005;331(7512):328-9. [DOI:10.1136/bmj.38503.706887.AE1] [PMID] [PMCID]
62. Sorkhe E, Jafarnezhadgero A. Effects of Corrective Training on Frequency Spectrum of Drop Landing Ground Reaction Force in Older Adults With Genu Valgus. Iran J Ageing. 2019; 12(3):24-36.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb