Volume 34, Issue 5 (August 2023)                   Studies in Medical Sciences 2023, 34(5): 235-246 | Back to browse issues page

Research code: 4023، 4018


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Forouhandeh H, Nejadali A, Abdi P, Mehdizadeh Aghdam E, Eliasifar B, Dilmaghani A. ISOLATION OF THE BACTERIA PRODUCING PHYTASE, BETA-GLUCANASE, CELLULASE AND GLUTAMINASE FROM SALINE SOIL OF SEMNAN PROVINCE, IRAN. Studies in Medical Sciences 2023; 34 (5) :235-246
URL: http://umj.umsu.ac.ir/article-1-5973-en.html
Associate Professor of Pharmaceutical Biotechnology, Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (Corresponding Author) , dilmaghania@tbzmed.ac.ir
Abstract:   (1543 Views)
Background & Aim: Today, attention has been paid to the enzymes of halophilic microorganisms and their biotechnological applications. One of the most important applications of halophilic microorganisms is their use in the production of hydrolytic enzymes that can perform reactions in harsh conditions. This study was conducted to isolate halophilic bacteria producing phytase, glucanase, cellulase and glutaminase from the saline soil of Semnan province, Iran.
Materials & Methods: In this research study, samples were taken from the saline soil of Haj Aligholi and Biyarajmand in Semnan province, Iran. First, isolated halophilic bacteria were cultured and screened for producing hydrolytic enzymes including phytase, cellulose, glutaminase, and beta-glucanases using enzyme-specific media. The enzymatic activities of the bacteria were then determined based on the formation of a clear halo or the formation of sediment around the colonies after adding the relevant reagents. Afterward, enzyme-positive isolates were identified using 16S rRNA gene sequencing analysis. Finally, the best activity and stability of the enzymes produced at different pH and temperatures were investigated.
Results: Results showed that the isolated halophilic bacteria were able to produce hydrolytic enzymes. The halophilic bacteria producing cellulose, glutaminase, and beta-glucanase enzymes belong to the Bacillus genus. The optimum pH and temperature for the highest activity of cellulase were 8 and 40 °C, respectively, and the enzyme stability occurred in pH= 8 at 60 °C. In addition, the optimal activity of glutaminase occurred at pH= 8 and 50 °C, and the best pH and temperature for glutaminase stability were 8 and 60 °C, respectively. Halophilic bacteria that produce beta-glucanase showed favorable growth at pH=9 and 50°C.
Conclusion: The results of the study showed that the bacteria isolated from the soil are of the genus Bacillus which can produce all three enzymes, beta-glucanase, cellulose, and glutaminase, and can be good sources for the production of enzymes necessary for research and industrial work.
Full-Text [PDF 470 kb]   (1156 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

References
1. Amziane M, Darenfed-Bouanane A, Abderrahmani A, Selama O, Jouadi L, Cayol J-L, et al. Virgibacillus ainsalahensis sp. nov., a Moderately Halophilic Bacterium Isolated from Sediment of a Saline Lake in South of Algeria. Curr Microb 2017;74(2):219-23. [DOI:10.1007/s00284-016-1171-0] [PMID]
2. Kushner D. Halophilic bacteria. Adv Appl Microbiol 1968;10:73-99. https://doi.org/10.1016/S0065-2164(08)70189-8 [DOI:10.1016/s0065-2164(08)70189-8] [PMID]
3. Vahed SZ, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, Jeon CO, et al. Halomonas tabrizica sp. nov., a novel moderately halophilic bacterium isolated from Urmia Lake in Iran. Antonie Van Leeuwenhoek 2018;111:1139-48. [DOI:10.1007/s10482-018-1018-8] [PMID]
4. Priyodip P, Prakash PY, Balaji S. Phytases of probiotic bacteria: characteristics and beneficial aspects. Indian J Microbiol 2017;57(2):148-54. [DOI:10.1007/s12088-017-0647-3] [PMID] [PMCID]
5. Khan SA, Zununi Vahed S, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, et al. Halomonas urmiana sp. nov., a moderately halophilic bacterium isolated from Urmia Lake in Iran. Int J Syst Evol Microbiol 2020;70(4):2254-60. [DOI:10.1099/ijsem.0.004005] [PMID]
6. Almeida FN, Sulabo RC, Stein HH. Effects of a novel bacterial phytase expressed in Aspergillus oryzae on digestibility of calcium and phosphorus in diets fed to weanling or growing pigs. J Animal Sci Biotech 2013;4(1):1-10. [DOI:10.1186/2049-1891-4-8] [PMID] [PMCID]
7. Shen L, Wu X-Q, Zeng Q-W, Liu H-B. Regulation of soluble phosphate on the ability of phytate mineralization and β-propeller phytase gene expression of Pseudomonas fluorescens JZ-DZ1, a phytate-mineralizing rhizobacterium. Curr Microbiol 2016;73(6):915-23. [DOI:10.1007/s00284-016-1139-0] [PMID]
8. Klemm R, Wyzga R, Thomas E. Daily Mortality and Air Pollution in Atlanta: August 1998-December 2006. Epidemiology 2009;20(6):S223. [DOI:10.1097/01.ede.0000362748.64100.18]
9. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, et al. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotech Biofuel 2014;7(1):1-15. [DOI:10.1186/s13068-014-0135-5] [PMID] [PMCID]
10. Vuong TV, Franco C, Zhang W. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture. Biotech Rep 2014;1:15-21. [DOI:10.1016/j.btre.2014.04.002] [PMID] [PMCID]
11. Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The Role of Endophytes in Combating Fungal-and Bacterial-Induced Stress in Plants. Molecules 2022;27(19):6549. [DOI:10.3390/molecules27196549] [PMID] [PMCID]
12. Ariffin H, Abdullah N, Umi Kalsom M, Shirai Y, Hassan M. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol 2006;3(1):47-53. [URL]
13. Gupta P, Sharma S, Saxena S. Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem biotech 2015;176(3):863-74. [DOI:10.1007/s12010-015-1616-0] [PMID]
14. Binod P, Sindhu R, Madhavan A, Abraham A, Mathew AK, Beevi US, et al. Recent developments in l-glutaminase production and applications-An overview. Bioresour Techn 2017;245:1766-74. [DOI:10.1016/j.biortech.2017.05.059] [PMID]
15. Garabito MJ, Arahal DR, Mellado E, Márquez MC, Ventosa A. Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J System Evol Microbiol 1997;47(3):735-41. [DOI:10.1099/00207713-47-3-735] [PMID]
16. Tarhriz V, Nouioui I, Spröer C, Verbarg S, Ebrahimi V, Cortés-Albayay C, et al. Pseudomonas khazarica sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Khazar Sea sediments. Antonie Van Leeuwenhoek 2020;113(4):521-32. [DOI:10.1007/s10482-019-01361-w] [PMID]
17. Enache M, Kamekura M. Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 2010;47:47-59. [Google Scholar]
18. Kazemi E, Tarhriz V, Hejazi MS, Amoozegar MA. Isolation and Characterization of Halophilic and Halotolerant Bacteria from Urmia Lake after the Recent Drought Disaster in 2015. Curr Biotech 2020;9(2):111-9. [DOI:10.2174/2211550109999200802153647]
19. Kazemi E, Tarhriz V, Amoozegar MA, Hejazi MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought. Int J System Evol Microbiol 2021;71(1):004578. [DOI:10.1099/ijsem.0.004578] [PMID]
20. de Lourdes Moreno M, Pérez D, García MT, Mellado E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life 2013;3(1):38-51. [DOI:10.3390/life3010038] [PMID] [PMCID]
21. Malik AD, Furtado IJ. 8 Pretreatment and. Enzymes in the Valorization of Waste: Enzymatic Pretreatment of Waste for Development of Enzyme-based Biorefinery. Mazandaran Univ Med Sci 2022:187. [DOI:10.1201/9781003187714-8] [PMID]
22. Li X, Yu H-Y. Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. J Industrial Microbiol Biotechnol 2012;39(8):1117-24. [DOI:10.1007/s10295-012-1120-2] [PMID]
23. Yu H-Y, Li X. Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenergy 2015;81:19-25. [DOI:10.1016/j.biombioe.2015.05.020]
24. Kumar S, Karan R, Kapoor S, Singh S, Khare S. Screening and isolation of halophilic bacteria producing industrially important enzymes. Brazil J Microbiol 2012;43:1595-603. https://doi.org/10.1590/S1517-83822012000400044 [DOI:10.1590/s1517-83822012000400044] [PMID] [PMCID]
25. Weingand-Ziadé A, Gerber-Décombaz C, Affolter M. Functional characterization of a salt-and thermotolerant glutaminase from Lactobacillus rhamnosus. Enzyme and Microbial Technology. 2003;32(7):862-7. https://doi.org/10.1016/S0141-0229(03)00059-0 [DOI:10.1016/s0141-0229(03)00059-0]
26. Dahpahlevan S, Khara J, Mousivand M, Hashemi M. Determination and modeling the optimum conditions of beta glucanase Bacillus subtilis B5d activity with potential used as feed additive. Biologic J Microorg 2016;5(17):1-14. [Google Scholar]
27. Furtado GP, Ribeiro LF, Santos CR, Tonoli CC, De Souza AR, Oliveira RR, et al. Biochemical and structural characterization of a β-1, 3-1, 4-glucanase from Bacillus subtilis 168. Process Biochem 2011;46(5):1202-6. [DOI:10.1016/j.procbio.2011.01.037]
28. Teng D, Wang J-h, Fan Y, Yang Y-l, Tian Z-g, Luo J, et al. Cloning of β-1, 3-1, 4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biotech 2006;72(4):705-12. [DOI:10.1007/s00253-006-0329-2] [PMID]
29. Apiraksakorn J, Nitisinprasert S, Levin RE. Grass degrading β-1, 3-1, 4-D-glucanases from Bacillus subtilis GN156: purification and characterization of glucanase J1 and pJ2 possessing extremely acidic pI. Appl Biochem Biotechnol 2008;149(1):53-66. [DOI:10.1007/s12010-007-8058-2] [PMID]
30. Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. A novel β-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol Lett 2005;248(1):9-15. [DOI:10.1016/j.femsle.2005.05.009] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb