1. Amziane M, Darenfed-Bouanane A, Abderrahmani A, Selama O, Jouadi L, Cayol J-L, et al. Virgibacillus ainsalahensis sp. nov., a Moderately Halophilic Bacterium Isolated from Sediment of a Saline Lake in South of Algeria. Curr Microb 2017;74(2):219-23. [
DOI:10.1007/s00284-016-1171-0] [
PMID]
2. Kushner D. Halophilic bacteria. Adv Appl Microbiol 1968;10:73-99.
https://doi.org/10.1016/S0065-2164(08)70189-8 [
DOI:10.1016/s0065-2164(08)70189-8] [
PMID]
3. Vahed SZ, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, Jeon CO, et al. Halomonas tabrizica sp. nov., a novel moderately halophilic bacterium isolated from Urmia Lake in Iran. Antonie Van Leeuwenhoek 2018;111:1139-48. [
DOI:10.1007/s10482-018-1018-8] [
PMID]
4. Priyodip P, Prakash PY, Balaji S. Phytases of probiotic bacteria: characteristics and beneficial aspects. Indian J Microbiol 2017;57(2):148-54. [
DOI:10.1007/s12088-017-0647-3] [
PMID] [
PMCID]
5. Khan SA, Zununi Vahed S, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, et al. Halomonas urmiana sp. nov., a moderately halophilic bacterium isolated from Urmia Lake in Iran. Int J Syst Evol Microbiol 2020;70(4):2254-60. [
DOI:10.1099/ijsem.0.004005] [
PMID]
6. Almeida FN, Sulabo RC, Stein HH. Effects of a novel bacterial phytase expressed in Aspergillus oryzae on digestibility of calcium and phosphorus in diets fed to weanling or growing pigs. J Animal Sci Biotech 2013;4(1):1-10. [
DOI:10.1186/2049-1891-4-8] [
PMID] [
PMCID]
7. Shen L, Wu X-Q, Zeng Q-W, Liu H-B. Regulation of soluble phosphate on the ability of phytate mineralization and β-propeller phytase gene expression of Pseudomonas fluorescens JZ-DZ1, a phytate-mineralizing rhizobacterium. Curr Microbiol 2016;73(6):915-23. [
DOI:10.1007/s00284-016-1139-0] [
PMID]
8. Klemm R, Wyzga R, Thomas E. Daily Mortality and Air Pollution in Atlanta: August 1998-December 2006. Epidemiology 2009;20(6):S223. [
DOI:10.1097/01.ede.0000362748.64100.18]
9. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, et al. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotech Biofuel 2014;7(1):1-15. [
DOI:10.1186/s13068-014-0135-5] [
PMID] [
PMCID]
10. Vuong TV, Franco C, Zhang W. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture. Biotech Rep 2014;1:15-21. [
DOI:10.1016/j.btre.2014.04.002] [
PMID] [
PMCID]
11. Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The Role of Endophytes in Combating Fungal-and Bacterial-Induced Stress in Plants. Molecules 2022;27(19):6549. [
DOI:10.3390/molecules27196549] [
PMID] [
PMCID]
12. Ariffin H, Abdullah N, Umi Kalsom M, Shirai Y, Hassan M. Production and characterization of cellulase by Bacillus pumilus EB3. Int J Eng Technol 2006;3(1):47-53. [
URL]
13. Gupta P, Sharma S, Saxena S. Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem biotech 2015;176(3):863-74. [
DOI:10.1007/s12010-015-1616-0] [
PMID]
14. Binod P, Sindhu R, Madhavan A, Abraham A, Mathew AK, Beevi US, et al. Recent developments in l-glutaminase production and applications-An overview. Bioresour Techn 2017;245:1766-74. [
DOI:10.1016/j.biortech.2017.05.059] [
PMID]
15. Garabito MJ, Arahal DR, Mellado E, Márquez MC, Ventosa A. Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J System Evol Microbiol 1997;47(3):735-41. [
DOI:10.1099/00207713-47-3-735] [
PMID]
16. Tarhriz V, Nouioui I, Spröer C, Verbarg S, Ebrahimi V, Cortés-Albayay C, et al. Pseudomonas khazarica sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Khazar Sea sediments. Antonie Van Leeuwenhoek 2020;113(4):521-32. [
DOI:10.1007/s10482-019-01361-w] [
PMID]
17. Enache M, Kamekura M. Hydrolytic enzymes of halophilic microorganisms and their economic values. Rom J Biochem 2010;47:47-59. [
Google Scholar]
18. Kazemi E, Tarhriz V, Hejazi MS, Amoozegar MA. Isolation and Characterization of Halophilic and Halotolerant Bacteria from Urmia Lake after the Recent Drought Disaster in 2015. Curr Biotech 2020;9(2):111-9. [
DOI:10.2174/2211550109999200802153647]
19. Kazemi E, Tarhriz V, Amoozegar MA, Hejazi MS. Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought. Int J System Evol Microbiol 2021;71(1):004578. [
DOI:10.1099/ijsem.0.004578] [
PMID]
20. de Lourdes Moreno M, Pérez D, García MT, Mellado E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life 2013;3(1):38-51. [
DOI:10.3390/life3010038] [
PMID] [
PMCID]
21. Malik AD, Furtado IJ. 8 Pretreatment and. Enzymes in the Valorization of Waste: Enzymatic Pretreatment of Waste for Development of Enzyme-based Biorefinery. Mazandaran Univ Med Sci 2022:187. [
DOI:10.1201/9781003187714-8] [
PMID]
22. Li X, Yu H-Y. Purification and characterization of an organic-solvent-tolerant cellulase from a halotolerant isolate, Bacillus sp. L1. J Industrial Microbiol Biotechnol 2012;39(8):1117-24. [
DOI:10.1007/s10295-012-1120-2] [
PMID]
23. Yu H-Y, Li X. Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production. Biomass Bioenergy 2015;81:19-25. [
DOI:10.1016/j.biombioe.2015.05.020]
24. Kumar S, Karan R, Kapoor S, Singh S, Khare S. Screening and isolation of halophilic bacteria producing industrially important enzymes. Brazil J Microbiol 2012;43:1595-603.
https://doi.org/10.1590/S1517-83822012000400044 [
DOI:10.1590/s1517-83822012000400044] [
PMID] [
PMCID]
25. Weingand-Ziadé A, Gerber-Décombaz C, Affolter M. Functional characterization of a salt-and thermotolerant glutaminase from Lactobacillus rhamnosus. Enzyme and Microbial Technology. 2003;32(7):862-7.
https://doi.org/10.1016/S0141-0229(03)00059-0 [
DOI:10.1016/s0141-0229(03)00059-0]
26. Dahpahlevan S, Khara J, Mousivand M, Hashemi M. Determination and modeling the optimum conditions of beta glucanase Bacillus subtilis B5d activity with potential used as feed additive. Biologic J Microorg 2016;5(17):1-14. [
Google Scholar]
27. Furtado GP, Ribeiro LF, Santos CR, Tonoli CC, De Souza AR, Oliveira RR, et al. Biochemical and structural characterization of a β-1, 3-1, 4-glucanase from Bacillus subtilis 168. Process Biochem 2011;46(5):1202-6. [
DOI:10.1016/j.procbio.2011.01.037]
28. Teng D, Wang J-h, Fan Y, Yang Y-l, Tian Z-g, Luo J, et al. Cloning of β-1, 3-1, 4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biotech 2006;72(4):705-12. [
DOI:10.1007/s00253-006-0329-2] [
PMID]
29. Apiraksakorn J, Nitisinprasert S, Levin RE. Grass degrading β-1, 3-1, 4-D-glucanases from Bacillus subtilis GN156: purification and characterization of glucanase J1 and pJ2 possessing extremely acidic pI. Appl Biochem Biotechnol 2008;149(1):53-66. [
DOI:10.1007/s12010-007-8058-2] [
PMID]
30. Akita M, Kayatama K, Hatada Y, Ito S, Horikoshi K. A novel β-glucanase gene from Bacillus halodurans C-125. FEMS Microbiol Lett 2005;248(1):9-15. [
DOI:10.1016/j.femsle.2005.05.009] [
PMID]