Volume 32, Issue 7 (October 2021)                   Studies in Medical Sciences 2021, 32(7): 490-499 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5351-en.html
Assistant Professor of Microbiology, Department of Biology, Payame Noor University, Tehran, Iran (Corresponding Author) , fouziehm@yahoo.com
Abstract:   (1901 Views)
Background & Aims: Bacterial resistance to antibiotic treatment is a dilemma that has led researchers to search for suitable alternatives. The use of herbs and nanotechnology can be a solution. This study aimed to investigate the antimicrobial activity of iron oxide nanoparticles in combination with lavender leaf extract using response surface methodology.
Materials & Methods: The response surface methodology and a central composite design were employed to evaluate the iron oxide nanoparticle and lavender extract's antibacterial activity at different temperatures against E.coli and S.aureus. The agar well diffusion method was used to determine the antibacterial activity.
Results: The results showed that the antimicrobial effect of iron oxide nanoparticles was greater than lavender extract. The response of the two tested bacteria to the combination of iron oxide nanoparticles and lavender extract was not the same at different temperatures. The antimicrobial effect of iron oxide nanoparticles in combination with lavender extract on the growth of S.aureus was greater than their effect on E.coli. On the other hand, increasing the temperature increased the antimicrobial properties of the combination of iron oxide nanoparticles and lavender extract against E.coli, but did not affect S.aureus.
Conclusion: According to the results, it can be concluded that iron oxide nanoparticles in combination with lavender extract can be a suitable option as an antimicrobial agent in topical or oral applications. However, more comprehensive studies and clinical trials are needed.
Full-Text [PDF 648 kb]   (539 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

1. Makhfian M, Pishgar E. Inhibitory effect of Stevia and Rosa extracts against bacterial Quarom sensing. Stud Med Sci 2019; 30 (6):443-53. (Persian) [Google Scholar]
2. Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 2011;6: 1833-52. [DOI:10.2147/IJN.S24019] [PMID] [PMCID]
3. Sanchooli N, Saidi S, Khandan H, Sanchooli E. In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes. Iran J Microbiol 2018; 10(6): 400-8. [PMID] [PMCID]
4. Gahremani M, Sharifi Y, Vahedi M, Hosseini Jazani N. Evaluation of the antibacterial effects of nicle nanoparticles on biofilm production of Mupirocin resistant isolates of S.aureus. Stud Med Sci 2016; 26 (12):1063-70. (Persian) [Google Scholar]
5. Sajadian M, Teimouri M. Effects of synthesized iron oxide nanoparticles from Ziziphora clinopodioides on expression of the efflux pump genes of Staphylococcus aureus. Koomesh 2020; 22(3): 542-9. (Persian) [DOI:10.29252/koomesh.22.3.542]
6. Moghadami F, Hosseini R. Effect of iron and silver nanoparticles on coenzyme Q10 production by Gluconobacter japonicus FM10. Iran J Microbiol 2020;12(6):592-600. [DOI:10.18502/ijm.v12i6.5034] [PMID] [PMCID]
7. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, et al. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecul 2013; 18(7): 7533-48. [DOI:10.3390/molecules18077533] [PMID] [PMCID]
8. Berry CC, Wells S, Charles S, Curtis AS. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterial 2003; 24(25): 4551-7. 9- Gupta AK, Curtis AS. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterial 2004; 25(15): 3029-40. [DOI:10.1016/j.biomaterials.2003.09.095] [PMID]
9. Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol 2011; 45: 1-16. [DOI:10.2478/v10019-011-0001-z] [PMID] [PMCID]
10. Xu C, Akakuru O, Zheng J, Wu A. Applications of Iron Oxide-Based Magnetic Nanoparticles in the Diagnosis and Treatment of Bacterial Infections. Front Bioeng Biotechnol 2019; 7: 1-15. [DOI:10.3389/fbioe.2019.00141] [PMID] [PMCID]
11. Hui L, He L, Huan L, Xiaolan L, Aiguo Z. Chemical composition of lavender oil and its antioxidant activity and inhibition against rhinitisrelated bacteria. Afr J Microbiol Res2010; 4: 309-13 [Google Scholar]
12. Sienkiewicz M, Lysakowska M, wierz J, Denys P, Kowalczyk E. Antibacterial activity of thyme and lavender essential oils. Med Chem 2011; 7: 674-89. [DOI:10.2174/157340611797928488] [PMID]
13. Cassella S, Cassella JP, Smith I. Synergistic antifungal activity of tea tree (Melaleuca alternifolia) and lavender (Lavandula angustifolia) essential oils against dermatophyte infection. Int J Aroma 2002; 12(1): 2-15. [DOI:10.1054/ijar.2001.0127]
14. Cavanagh MHA, Wilkinson JM. Biological activities of lavender essential oil. Phytother Res 2002; 16(4): 301-8. [DOI:10.1002/ptr.1103] [PMID]
15. Behnam S, Farzaneh M, Ahmadzadeh M, Tehrani AS. Composition and antifungal activity of essential oils of Mentha piperita and Lavandula angustifolia on post-harvest phytopathogens. Com Agri Appl Biol Sci 2006; 71(3): 1321-6. [PMID]
16. Roller S, Ernest N, Buckle J. The antimicrobial activity of high-necrodane and other lavender oils on methicillin-sensitive and -resistant Staphylococcus aureus (MSSA and MRSA). J Alter Compl Med 2009; 15(3): 275-9. [DOI:10.1089/acm.2008.0268] [PMID]
17. Rasuli A, Rezai M. Study of antimicrobial activity and chemical composition of essential oils of L.angustifolia. J Kerman Univ Med Sci 2000; 7: 173-81. [Google Scholar]
18. Moghadami F, Dolatabadi S, Nazem H. Antimicrobial Activity of Alcohol and Aqueous Extract of Lavandula angustifolia Leaves and Flowers on Streptococcus pyogenes and Staphylococcus aureus. J Zanjan Medical Uni 2012; 20: 56-63. [Google Scholar]
19. Masoumipour F, Hassanshahian M, Jafarinasab T. Antimicrobial Activity of Combined Extracts of Trachyspermum, Thymus and Pistachio against Some Pathogenic Bacteria. J Kerman Uni Medi Sci 2018; 25 (2): 153-63. [Google Scholar]
20. Rapper S, Viljoen A, Vuuren S. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents. Evid Based Complement Alternat Med 2016; 2016. [DOI:10.1155/2016/2752739] [PMID] [PMCID]
21. Zeynali-Aghdam S, Minaeian S, Sadeghpour Karimi M, Tabatabaee Bafroee A. The Antibacterial Effects of the Mixture of Silver Nanoparticles With the Shallot and Nettle Alcoholic Extracts. J Appl Biotechnol Rep 2019; 6(4):158-64. [DOI:10.29252/JABR.06.04.05]
22. Ahmad A, Khan A, Samber N, Manzoor N. Antimicrobial activity of Mentha piperita essential oil in combination with silver ions. Synergy 2014;1(2):92-8. [DOI:10.1016/j.synres.2014.11.001]
23. Jafari B, Monadi A. Comparative study on the effects of silver nanoparticles and methanolic extracts of Calendula officinalis on pathogenic bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa under laboratory conditions. J Sabzevar Medical Uni 2020; 27(2):163-71. [Google Scholar]
24. Minitab. Designing an Experiment [Internet]. 2017 [cited 2021 Nov 4]. Available from: https://support.minitab.com/en-us/minitab/18/getting-started/designing-an-experiment/ [URL]
25. Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero L. Optimization of Silver Nanoparticle Synthesis by Chemical Reduction and Evaluation of its Antimicrobial and Toxic Activity. Biomaterial Res 2019; 23(27):1-5. [DOI:10.1186/s40824-019-0173-y] [PMID] [PMCID]
26. Moghadami F, Fooladi J, Hosseini R, Kalantari M. Optimization of coenzyme Q10 production by Gluconobacter japonicus FM10 using response surface methodology. J Appl Biotechnol Rep 2020;7(4): 65-71. [DOI:10.18502/ijm.v12i6.5034] [PMID] [PMCID]
27. Ammer MR, Zaman S, Khalid M, Bilal M, Erum S. Optimization of antibacterial activity of Eucalyptus tereticornis leaf extracts against Escherichia coli through response surface methodology. J Rad Research Appl Sci 2016; 9; 376-85. [DOI:10.1016/j.jrras.2016.05.001]
28. Maghsoudy N, Aberoomand-Azar P, Tehrani MS, Husain SW, Larijani K. Biosynthesis of Ag and Fe nanoparticles using Erodium cicutarium; study, optimization, and modeling of the antibacterial properties using response surface methodology. J Nano Chem 2019; 9:203-16. [DOI:10.1007/s40097-019-0311-z]
29. Hajipour M, Fromm K, Ashkarran A, Aberasturi D, Larramendi I, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol 2012;30(10):499-511. [DOI:10.1016/j.tibtech.2012.06.004] [PMID]
30. Smekalova M, Aragon V, Panacek A, Prucek R, Zboril R, Kvitek L. Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet J 2016; 209:174- 9. [DOI:10.1016/j.tvjl.2015.10.032] [PMID]
31. Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR. Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: effcacy against bacterial burn infections. Antimicrob Agents Chemother 2011; 55(7): 3432-8. [DOI:10.1128/AAC.01803-10] [PMID] [PMCID]
32. Javan Bakht Dalir S, Djahaniani H, Nabati F, Hekmati M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon 2020; 6: e03624. [DOI:10.1016/j.heliyon.2020.e03624] [PMID] [PMCID]
33. Heydari S, Jooyandeh H, Alizadeh behbahani B, Noshad M. Invitro Determination of Chemical Compounds and Antibacterial Activity of Lavandula Essential oil against some Pathogenic Microorganisms. J Ilam Univ Med Sci 2019; 27 (4):77-89. [DOI:10.29252/sjimu.27.4.77]
34. Yap P, Lim S, Hu C, Yiap B. Combination of Essential Oils and Antibiotics Reduce Antibiotic Resistance in Plasmid-conferred Multidrug Resistant Bacteria. Phytomed 2013; 20(8): 710-3. [DOI:10.1016/j.phymed.2013.02.013] [PMID]
35. Krychowiak M, Grinholc M, Banasiuk R, Krauze- Baranowska M, Głód D, Kawiak A, et al. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One 2014; 9(12): e115727. [DOI:10.1371/journal.pone.0115727] [PMID] [PMCID]
36. Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013; 942916. [DOI:10.1155/2013/942916] [PMID] [PMCID]
37. Costa CS, Vieira Ronconi JV, Felipe Daufenbach J, Gonçalves CL, Tezza Rezin G. In vitro effects of silver nanoparticles on the mitochondrial respiratory chain. Molecula Cellula Biochem 2010; 342(1): 51-6. [DOI:10.1007/s11010-010-0467-9] [PMID]
38. Doughari J. Antimicrobial activity of Tamarindus indica Linn. Trop J Pharma Res 2007; 5(2): 597e603. [DOI:10.4314/tjpr.v5i2.14637]
39. Mahfuzul Hoque MD, Bari ML, Inatsu Y, Vijay K. Antibacterial Activity of Guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) Extracts Against Foodborne Pathogens and Spoilage Bacteria. Foodborn Path Dis 2007; 4 (4):481-8. [DOI:10.1089/fpd.2007.0040] [PMID]
40. Adeshina G, Okeke C, Onwuegbuchulam N, Ehinmidu J. Preliminary studies on antimicrobial activities of ethanolic extracts of Ficus sycomorus Linn. and Ficus platyphylla Del. Int J Biol Chem Sci 2009; 3(5): 147-51. [DOI:10.4314/ijbcs.v3i5.51080]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb