Volume 32, Issue 1 (April 2021)                   Studies in Medical Sciences 2021, 32(1): 1-13 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

URL: http://umj.umsu.ac.ir/article-1-5318-en.html
Department of Physical Education and Sport Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran (Corresponding Author) , f_taghian@yahoo.com
Abstract:   (2114 Views)
Background & Aims: Exercise can also be effective in rehabilitating myocardial infarction by strengthening myocardial muscle tissue. This study aimed to evaluate the effect of aerobic exercise alone, and along with the consumption of chitosan encapsulated ginger extract on the histopathological characteristics of cardiac tissue and the level of MAPK expression in rats with myocardial infarction.
Materials & Methods: In this experimental study, 25 Wistar male rats were randomly divided into 5 groups (n = 5): myocardial infarction (Model), myocardial infarction + nanoparticle capsule extract + exercise, myocardial infarction + nanoparticle encapsulated extract, myocardial infarction + nanoparticle, myocardial infarction + exercise. Myocardial infarction was induced by subcutaneous injection. The main training program was for six weeks; thus, in the first week, the speed started at 10 meters per minute, and the time was 10 minutes, and by the sixth week, the speed reached 15 meters per minute, and the time reached 60 minutes. Ginger extract encapsulated in chitosan nanoparticles was gavaged at 500 mg/kg for six weeks. Finally, rats were anesthetized, and heart tissue was collected for MAPK gene expression using Real-Time PCR and histopathological studies (hematoxylin and eosin staining).
Results: The rat model of myocardial infarction in the groups trained and treated with the extract encapsulated in chitosan nanoparticles showed a significant decrease in MAPK gene expression compared to the model group (p<0.05). The chitosan encapsulated ginger extract, either alone or with continuous exercise, caused the heart tissue's cohesive muscle fibers to be placed next to each other or significantly reduced the amount of bleeding and infiltration of inflammatory cells compared to the model group (p<0.001).
Conclusion: Six weeks of aerobic exercise and consumption of encapsulated ginger extract in nanoparticles can reduce isopropanol-induced heart tissue damage by improving cardiac homeostasis and reducing MAPK.
Full-Text [PDF 906 kb]   (1172 Downloads)    
Type of Study: Research | Subject: Exercise physiology

1. Jabbar A, Ingoe L, Thomas H, Carey P, Junejo S, Addison C, et al. Prevalence, predictors and outcomes of thyroid dysfunction in patients with acute myocardial infarction: the ThyrAMI-1 study. J Endocrinol Invest 2020:1-10. [DOI:10.1007/s40618-020-01408-0] [PMID] [PMCID]
2. Vähätalo JH, Huikuri HV, Holmström LT, Kenttä TV, Haukilahti MAE, Pakanen L, et al. Association of silent myocardial infarction and sudden cardiac death. JAMA cardiology 2019;4(8):796-802. [DOI:10.1001/jamacardio.2019.2210] [PMID] [PMCID]
3. Li S, Ding Y, Niu Q, Xu S, Pang L, Ma R, et al. Lutein has a protective effect on hepatotoxicity induced by arsenic via Nrf2 signaling. Biomed Res Int 2015;2015:315205. [DOI:10.1155/2015/315205] [PMID] [PMCID]
4. Amran AZ, Jantan I, Dianita R, Buang F. Protective effects of the standardized extract of Zingiber officinale on myocardium against isoproterenol-induced biochemical and histopathological alterations in rats. Pharm Biol 2015;53(12):1795-802. [DOI:10.3109/13880209.2015.1008147] [PMID]
5. White HD, Chew DP. Acute myocardial infarction. The Lancet 2008;372(9638):570-84. [DOI:10.1016/S0140-6736(08)61237-4]
6. Lu H, Tan Y, Yang L, Dong H, Liao Y, Cao S, et al. Cardioprotective efficiency of tangeretin against heart failure induced by isoproterenol in rats. International Journal of Pharmacology 2018;14(8):1145-52. [DOI:10.3923/ijp.2018.1145.1152]
7. Han YA, Song CW, Koh WS, Yon GH, Kim YS, Ryu SY, et al. Anti‐inflammatory effects of the Zingiber officinale roscoe constituent 12‐dehydrogingerdione in lipopolysaccharide‐stimulated Raw 264.7 cells. Phytother Res 2013;27(8):1200-5. [DOI:10.1002/ptr.4847] [PMID]
8. Stoner G. Ginger: Is it ready for prime time? Cancer Prev Res 2013; 6: 257-62. [DOI:10.1158/1940-6207.CAPR-13-0055] [PMID]
9. Nile SH, Park SW. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products 2015;70:238-44. [DOI:10.1016/j.indcrop.2015.03.033]
10. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016;101:321-40. [DOI:10.1016/j.biomaterials.2016.06.018] [PMID] [PMCID]
11. Kumar NV, Murthy PS, Manjunatha JR, Bettadaiah B. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food chem 2014;159:451-7. [DOI:10.1016/j.foodchem.2014.03.039] [PMID]
12. Citronberg J, Bostick R, Ahearn T, Turgeon DK, Ruffin MT, Djuric Z, et al. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial. Cancer Prevention Research 2013;6(4):271-81. [DOI:10.1158/1940-6207.CAPR-12-0327] [PMID] [PMCID]
13. Ho S-C, Chang K-S, Lin C-C. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food chem2013;141(3):3183-91. [DOI:10.1016/j.foodchem.2013.06.010] [PMID]
14. Akinyemi AJ, Thome GR, Morsch VM, Stefanello N, Goularte JF, Belló-Klein A, et al. Effect of dietary supplementation of ginger and turmeric rhizomes on angiotensin-1 converting enzyme (ACE) and arginase activities in L-NAME induced hypertensive rats. J Funct Foods 2015;17:792-801. [DOI:10.1016/j.jff.2015.06.011]
15. Suk S, Kwon GT, Lee E, Jang WJ, Yang H, Kim JH, et al. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high‐fat diet‐fed mice. Mol Nutr Food Res 2017;61(10):1700139. [DOI:10.1002/mnfr.201700139] [PMID] [PMCID]
16. Wei C-K, Tsai Y-H, Korinek M, Hung P-H, El-Shazly M, Cheng Y-B, et al. 6-paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. International journal of molecular sciences 2017;18(1):168. [DOI:10.3390/ijms18010168] [PMID] [PMCID]
17. Walstab J, Krüger D, Stark T, Hofmann T, Demir I, Ceyhan G, et al. Ginger and its pungent constituents non‐competitively inhibit activation of human recombinant and native 5‐HT3 receptors of enteric neurons. Neurogastroenterol Motil 2013;25(5):439-e302. [DOI:10.1111/nmo.12107] [PMID]
18. Townsend EA, Siviski ME, Zhang Y, Xu C, Hoonjan B, Emala CW. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am J Respir Cell Mol Biol 2013;48(2):157-63. [DOI:10.1165/rcmb.2012-0231OC] [PMID] [PMCID]
19. Li Y, Xu B, Xu M, Chen D, Xiong Y, Lian M, et al. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling. Pharmacol Res 2017;119:137-48. [DOI:10.1016/j.phrs.2017.01.026] [PMID]
20. Verma VK, Malik S, Narayanan SP, Mutneja E, Sahu AK, Bhatia J, et al. Role of MAPK/NF-κB pathway in cardioprotective effect of Morin in isoproterenol induced myocardial injury in rats. Mol Biol Rep 2019;46(1):1139-48. [DOI:10.1007/s11033-018-04575-9] [PMID]
21. Ren G, Cui Y, Li W, Li F, Han X. Research on cardioprotective effect of irbesartan in rats with myocardial ischemia-reperfusion injury through MAPK-ERK signaling pathway. Eur Rev Med Pharmacol Sci 2019;23(12):5487-94. [Google Scholar]
22. Liu K, Wang F, Wang S, Li W-N, Ye Q. Mangiferin Attenuates Myocardial Ischemia-Reperfusion Injury via MAPK/Nrf-2/HO-1/NF-κB In Vitro and In Vivo. Oxid Med Cell Longev 2019;2019:7285434. [DOI:10.1155/2019/7285434] [PMID] [PMCID]
23. Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovascular research 2004;61(3):548-58. [DOI:10.1016/j.cardiores.2003.12.004] [PMID]
24. Bulmer C, Margaritis A, Xenocostas A. Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochemical engineering journal 2012;68:61-9. [DOI:10.1016/j.bej.2012.07.007]
25. Patel J, Jivani N. Chitosan based nanoparticles in drug delivery. Int J Pharm Sci Nanotechnol 2009;2(2):517-22. [DOI:10.37285/ijpsn.2009.2.2.4]
26. Shahbazi MA, Hamidi M, Mohammadi‐Samani S. Preparation, optimization, and in‐vitro/in‐vivo/ex‐vivo characterization of chitosan‐heparin nanoparticles: drug‐induced gelation. J Pharm Pharmacol 2013;65(8):1118-33. [DOI:10.1111/jphp.12076] [PMID]
27. Soleimani A, Khosravi A, Asadi E. The effect of ten weeks ginger consumption on lipid profile and body composition in obese women following the exercise Pilates. Tehran Univ Med J 2019;77(3):193-8. [Google Scholar]
28. Fakhri F, Shakeryan S, Fakhri S, Alizadeh A. The effect of 6 weeks of high intensity interval training (HIIT) with nano-curcumin supplementation on factors related to cardiovascular disease in inactive overweight girls. Feyz 2020;24(2):181-9. [DOI:10.18502/ijdo.v11i3.2606]
29. Nagayama M, Itoh H, Maeda T. Cardiac rehabilitation for patients with acute myocardial infarction. Nihon Rinsho2011;69:203. [Google Scholar]
30. Achttien R, Staal J, van der Voort S, Kemps H, Koers H, Jongert M, et al. Exercise-based cardiac rehabilitation in patients with coronary heart disease: a practice guideline. Netherlands heart journal 2013;21(10):429-38. [DOI:10.1007/s12471-013-0467-y] [PMID] [PMCID]
31. Sharma M, Kishore K, Gupta SK, Joshi S, Arya DS. Cardioprotective potential of Ocimum sanctum in isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 2001;225(1-2):75-83. [Google Scholar]
32. Xu X, Wan W, Ji L, Lao S, Powers AS, Zhao W, et al. Exercise training combined with angiotensin II receptor blockade limits post-infarct ventricular remodelling in rats. Cardiovascular research 2008;78(3):523-32. [DOI:10.1093/cvr/cvn028] [PMID]
33. Xu X, Zhao W, Lao S, Wilson BS, Erikson JM, Zhang JQ. Effects of exercise and L-arginine on ventricular remodeling and oxidative stress. Med Sci Sports Exerc 2010;42(2):346. [DOI:10.1249/MSS.0b013e3181b2e899] [PMID] [PMCID]
34. Azamian Jazi A, Abdi H, Haffezi Ahmadi MR, Cheraghi J. Effect of endurance exercise training on morphological changes in rat heart tissue following experimental myocardial infarction. Journal of Basic Research in Medical Sciences 2017;4(1):8-16. [DOI:10.18869/acadpub.jbrms.4.1.8]
35. Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 2009;104(2):e9-e18. [DOI:10.1161/CIRCRESAHA.108.188243] [PMID] [PMCID]
36. Wang Y, Tian Z, Zang W, Jiang H, Li Y, Wang S, et al. Exercise training reduces insulin resistance in postmyocardial infarction rats. Physiological Reports 2015;3(4):e12339. [DOI:10.14814/phy2.12339] [PMID] [PMCID]
37. Baghaiee B, Karimi P, Siahkouhian M, Pescatello LS. Moderate aerobic exercise training decreases middle-aged induced pathologic cardiac hypertrophy by improving Klotho expression, MAPK signaling pathway, and oxidative stress status in Wistar rats. Iranian journal of basic medical sciences 2018;21(9):911. [Google Scholar]
38. Shukla Y, Singh M. Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 2007;45(5):683-90. [DOI:10.1016/j.fct.2006.11.002] [PMID]
39. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 2010;127(2):515-20. [DOI:10.1016/j.jep.2009.10.004] [PMID]
40. Martinez PF, Bonomo C, Guizoni DM, Junior SAO, Damatto RL, Cezar MD, et al. Modulation of MAPK and NF-κB signaling pathways by antioxidant therapy in skeletal muscle of heart failure rats. Cell Physiol Biochem 2016;39(1):371-84. [DOI:10.1159/000445631] [PMID]
41. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovascular research 2000;46(2):250-6. [DOI:10.1016/S0008-6363(00)00032-8]
42. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 1994;26(3):279-92. [DOI:10.1006/jmcc.1994.1036] [PMID]
43. Wessler S, Zoll PM, Schlesinger MJ. The pathogenesis of spontaneous cardiac rupture. Circulation 1952;6(3):334-51. [DOI:10.1161/01.CIR.6.3.334] [PMID]
44. Cleutjens J, Verluyten M, Smiths J, Daemen M. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol 1995;147(2):325. [Google Scholar]
45. van der Laan AM, Nahrendorf M, Piek JJ. Republished: healing and adverse remodelling after acute myocardial infarction: role of the cellular immune response. Postgrad Med J2013;89(1047):52-8. [DOI:10.1136/postgradmedj-2012-301623rep] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb