Volume 31, Issue 10 (January 2020)                   Studies in Medical Sciences 2020, 31(10): 725-734 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mokhtari H, Montaseri A, Mojaddadi M, Maleki Dizaj S. EVALUATION OF THE EFFECT OF PLATELET-RICH PLASMA (PRP) ON OSTEOBLAST AND OSTEOCLAST DIFFERENTIATION IN THE PRESENCE OF POLYCAPROLACTONE / HYDROXYAPATITE 3D SCAFFOLD: AN IN VITRO STUDY. Studies in Medical Sciences 2020; 31 (10) :725-734
URL: http://umj.umsu.ac.ir/article-1-5316-en.html
Assistant Professor, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (Corresponding Author) , maleki.s.89@gmail.com
Abstract:   (2528 Views)
Background & Aims: It has been shown that growth factors have a great role in improving wound healing processes. In addition, a relatively high proportion of endodontically treated teeth will require retrograde treatment in the future. Therefore, the aim of the present study was to evaluate the effect of platelet-rich plasma (PRP) on differentiation of osteoblasts and osteoclasts in the presence of a three-dimensional scaffold.
Materials & Methods: In this in vitro study, mesenchymal stem cells were isolated from the Wharton jelly of human fetal umbilical cord and assigned into osteoblasts and osteoclasts groups for the evaluation of differentiation. Each group was subdivided into two subgroups with and without PRP. All the samples were cultured on two PCL/HA (polycaprolacton/hydroxyapatite) polymer scaffold. To evaluate differentiation into osteoblasts, DMEM (Dulbecco’s Modified Eagle’s Medium) was used that contained 7‒10-mol dexamethasone, 10-mol glycerophosphate, and 50-mol ascorbic acid. In the osteoclast differentiation group, RANKL (receptor activator of nuclear factor Kappa-B ligand) and CSF (colony-stimulating factor) were used. In addition to differentiation agents, 10% PRP was added to the two subgroups containing PRP. After 10 days, differentiation into osteoblasts and osteoclasts was evaluated by assessing the expression of specific genes using real-time PCR. In the osteoblast differentiation group, expression of osteocalcin and osteotrix genes was evaluated and in the osteoclast differentiation group, expression of TRAP (tartrate-resistant acid phosphatase) was evaluated. Data were analyzed using one-way ANOVA, two-way ANOVA, and post hoc Tukey tests, using Graph Pad software program.
Results: Evaluation of the expression of the TRAP gene did not reveal any significant differences between the study and control groups. There was a significant difference between the group with the osteoclastogenic factor alone and the group with osteoclastogenic factor and PRP (p=0.0324). There was a significant difference in osterix expression between the control group and the PRP-treated group (p=0.0050). There was a significant difference between the group with osteoblastogenic factor alone and the group with osteoblastogenic factor and PRP (p=0.00001). There was a significant difference in the expression of osteocalcin gene between the control and PRP-treated groups (p=0.0110); however, the differences between the osteoblastogenesis groups with and without PRP treatment were not significant (P=0.5191). The differences in the expression of TRAP, osterix, and osteocalcin genes between the control and PRP-treated groups were significant (p=0.006 and p=0.0001, respectively).
Conclusion: The results of the present study showed that PRP resulted in an increase in osteoblastic differentiation, with no significant increase in osteoclastic differentiation.
Full-Text [PDF 2045 kb]   (798 Downloads)    

References
1. Hargreaves KM, Berman LH. Cohen's pathways of the pulp. 11th ed. USA: Elsevier; 2016. p. 495. [URL]
2. Elemam RF, Pretty I. Comparison of the success rate of endodontic treatment and implant treatment. ISRN Dent 2011; 2011: 640509. [DOI:10.5402/2011/640509] [PMID] [PMCID]
3. Ravi M, Paramesh V, Kaviya S, Anuradha E, Solomon F. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015; 230 (1):16-26. [DOI:10.1002/jcp.24683] [PMID]
4. Tang R, Application of platelet-rich plasma in traumatic bone infections. Exp Rev Anti Infect Ther 2020; 18 (1): 1-12. [Google Scholar]
5. Priya MH, Tambakad PB, Naidu J. Pulp and Periodontal Regeneration of an Avulsed Permanent Mature Incisor Using Platelet-rich Plasma after Delayed Replantation: A 12-month Clinical Case Study. J Endod 2016; 42 (1): 66-71. [DOI:10.1016/j.joen.2015.07.016] [PMID]
6. Rosello-Camps A, Monje A, Lin GH, Khoshkam V, Chavez-Gatty M, Wang HL, et al. Platelet-rich plasma for periodontal regeneration in the treatment of intrabony defects: a meta-analysis on prospective clinical trials. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120 (5): 562-74. [DOI:10.1016/j.oooo.2015.06.035] [PMID]
7. Dohan Ehrenfest DM, Andia I, Zumstein MA, Zhang CQ, Pinto NR, Bielecki T. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine :current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J 2014; 4(1): 3-9. [DOI:10.32098/mltj.01.2014.02] [PMID] [PMCID]
8. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85 (6): 638-46. [DOI:10.1016/S1079-2104(98)90029-4]
9. Whitman DH, Berry RL, Green DM. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 1997; 55 (11): 1294-9. [DOI:10.1016/S0278-2391(97)90187-7]
10. DelFabbro M, Bortolin M, Taschieri S. Is autologous platelet concentrate beneficial for post-extraction socket healing? A systematic review. Int J Oral Maxillofac Surg 2011; 40 (9): 891-900. [DOI:10.1016/j.ijom.2011.04.009] [PMID]
11. Sanchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants 2003; 18(1): 93-103. [Google Scholar]
12. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 2004; 91 (1):4-15. [DOI:10.1160/TH03-07-0440] [PMID]
13. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 2004; 62 (4): 489-96. [DOI:10.1016/j.joms.2003.12.003] [PMID]
14. Martinez-Zapata MJ, Marti-Carvajal AJ, Sola I, Exposito JA, Bolibar I, Rodriguez L, et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev 2012; 10: CD006899. [DOI:10.1002/14651858.CD006899.pub2]
15. Baba K, Yamazaki Y, Ishiguro M, Kumazawa K, Aoyagi K, Ikemoto S, et al. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study. Journal of Cranio-Maxillo Surg 2013; 41 (8): 775-82. [DOI:10.1016/j.jcms.2013.01.025] [PMID]
16. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294 (5547): 1708-12. [DOI:10.1126/science.1064829] [PMID]
17. Mazzoleni G, Di Lorenzo D, Steimberg N. Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr 2009; 4 (1): 13-22. [DOI:10.1007/s12263-008-0107-0] [PMID] [PMCID]
18. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007; 4 (4): 359-65. [DOI:10.1038/nmeth1015] [PMID] [PMCID]
19. Kasten P, Vogel J, Luginbühl R, Niemeyer P, Weiss S, Schneider S, et al. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Cells Tissues Organs 2006; 183 (2): 68-79. [DOI:10.1159/000095511] [PMID]
20. Wong RW, Rabie ABM. Histologic and ultrastructural study on statin graft in rabbit skulls. J Oral Maxillofacial Surg 2005; 63 (10): 1515-21. [DOI:10.1016/j.joms.2005.06.009] [PMID]
21. Kawasumi M, Kitoh H, Siwicka K, Ishiguro N. Theeffect of the platelet concentration in platelet-rich plasma gel on the regeneration of bone. Bone Joint J 2008; 90 (7): 966-72. [DOI:10.1302/0301-620X.90B7.20235] [PMID]
22. Moreira DC, Sá CN, Andrade MGS, dos Santos Calmon TCB, de Almeida Reis SR, Pithon MM, et al. Angiogenesis and osteogenesis at incorporation process of onlay bone graft. J Oral Maxillo Surg 2013; 71 (12): 2048-57. [DOI:10.1016/j.joms.2013.06.215] [PMID]
23. Baba K, Yamazaki Y, Ikemoto S, Aoyagi K, Takeda A, uchinuma E. oateogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived autoserum. J Cranio-maxillo-facial Surg 2012; 40: 768-72 [DOI:10.1016/j.jcms.2012.02.006] [PMID]
24. Pessoa RS, Oliveira SR, Menezes HH, de Magalhaes D. Effects of platelet-rich plasma on healing ofPRPalveolar socket: split-mouth histological and histometric evaluation in Cebus apella monkeys. Indian J Dental Res 2009; 20 (4): 442. [DOI:10.4103/0970-9290.59448] [PMID]
25. Del Fabbro M, Bortolin M, Taschieri S. Is autologous platelet concentrate beneficial for post-extraction socket healing? A systematic review. Int J Oral Maxillofac Surg 2011; 40 (9): 891-900. [DOI:10.1016/j.ijom.2011.04.009] [PMID]
26. Hernandez-Fernandez A, Vélez R, Soldado F, Saenz-Ríos JC, Barber I, Aguirre-Canyadell M. Effect of administration of platelet-rich plasma in early phases of distraction osteogenesis: an experimental study in an ovine femur model. Injury 2013; 44 (7): 901-7. [DOI:10.1016/j.injury.2012.10.018] [PMID]
27. Kon E, Filardo G, Delcogliano M, Fini M, Salamanna F, Giavaresi G, et al. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculo Disord 2010; 11 (1): 220. [DOI:10.1186/1471-2474-11-220] [PMID] [PMCID]
28. Oliveira Filho MAd, Nassif PAN, Malafaia O, Ribas Filho JM, Ribas CAPM, Camacho AC, et al. Effects of a highly concentrated platelet-rich plasma on the bone repair using non-critical defects in the calvaria of rabbits. Acta Cir Bras 2010; 25 (1): 28-33. [DOI:10.1590/S0102-86502010000100008] [PMID]
29. Giovanini AF, Gonzaga CC, Zielak JC, Deliberador TM, Kuczera J, Göringher I, et al. Platelet‐rich plasma (PRP) impairs the craniofacial bone repair associated with its elevated TGF‐β levels and modulates the co‐expression between collagen III and α‐smooth muscle actin. J Orthoped Res 2011; 29 (3): 457-63. [DOI:10.1002/jor.21263] [PMID]
30. Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, et al. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater App 2008; 23 (2):88-9. [DOI:10.1177/0885328207088269] [PMID]
31. Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet-rich plasma in rabbit cranial defects: a pilot study. J Oral Maxillo Surg 2002; 60 (10):1176-81. [DOI:10.1053/joms.2002.34994] [PMID]
32. Hsu C-W, Yuan K, Tseng C-C. The negative effect of platelet-rich plasma on the growth of human cells is associated with secreted thrombospondin-1. Oral Surg Oral Med Oral Pathol Oral Radiol Endodont 2009; 107 (2): 185-92. [DOI:10.1016/j.tripleo.2008.07.016] [PMID]
33. Ogino Y, Ayukawa Y, Kukita T, Atsuta I, Koyano K. Platelet‐rich plasma suppresses osteoclast genesis by promoting the secretion of osteoprotegerin. J PerioRes 2009; 44 (2): 217-24. [DOI:10.1111/j.1600-0765.2008.01109.x] [PMID]
34. Woodall Jr J, Tucci M, Mishra A, Benghuzzi H. Cellular effects of platelet rich plasma: a study on HL-60 macrophage-like cells. Biomed Sci Instrument 2006; 43: 266-71. [PMID]
35. Alissa R, Esposito M, Horner K, Oliver R. The influence of platelet-rich plasma on the healing of extraction sockets: an explorative randomised clinical trial. Eur J Oral Implantol 2010; 3(2):121-34. [Google Scholar]
36. Lu HH, Vo JM, Chin HS, Lin J, Cozin M, Tsay R, et al. Controlled delivery of platelet‐rich plasma‐derived growth factors for bone formation. J Biomedical Material Res Part A 2008; 86 (4):1128-36. [DOI:10.1002/jbm.a.31740] [PMID]
37. Erlebacher A, FilvaroffEH, Ye J-Q, Derynck R. Osteoblastic responses to TGF-β during bone remodeling. Molecular Biology Cell 1998; 9 (7): 1903-18. [DOI:10.1091/mbc.9.7.1903] [PMID] [PMCID]
38. Arora NS, Ramanayake T, Ren Y-F, Romanos GE. Platelet-rich plasma in sinus augmentation procedures: a systematic literature review: Part II. Implant Dent 2010; 19 (2): 145-57. [DOI:10.1097/ID.0b013e3181cd706d] [PMID]
39. Boyapati L, Wang H-L. The role of platelet-rich plasma in sinus augmentation: a critical review. Implant Dent 2006; 15 (2):160-70. [DOI:10.1097/01.id.0000217791.74343.60] [PMID]
40. Aimetti M, Romano F, Dellavia C, De Paoli S. Sinus grafting using autogenous bone and platelet-richplasma: histologic outcomes in humans. Inter J Periodont Res Dent 2008; 28 (6). [Google Scholar]
41. Schaaf H, Streckbein P, Lendeckel S, Heidinger KS, Rehmann P, Boedeker R-H, et al. Sinus lift augmentation using autogenous bone grafts and platelet-rich plasma: radiographic results. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 2008; 106 (5): 673-8. [DOI:10.1016/j.tripleo.2008.04.004] [PMID]
42. Lee CY, Rohrer MD, Prasad HS. Immediate loading of the grafted maxillary sinus using platelet rich plasma and autogenous bone: a preliminary study with histologic and histomorphometric analysis. Implant Dent 2008; 17 (1): 59-73. [DOI:10.1097/ID.0b013e318166ce3c] [PMID]
43. Ju B. comparative dosimetry of Galileos dental CBCT imaging: report of result .http://www.wisby.net/tv/334391/files/Galileos_CBCT.2012
44. Wang J, Xie L, Wang X, Zheng W, Chen H, Cai L. The effects of oyster shell/alpha-calcium sulfate hemihydrate/platelet-rich plasma/bone mesenchymal stem cells bioengineering scaffold on rat critical-sized calvarial defects. J Mater Sci Mater Med 2020; 31 (11): 1-14. [DOI:10.1007/s10856-020-06441-2] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb