Volume 32, Issue 3 (June 2021)                   Studies in Medical Sciences 2021, 32(3): 225-233 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassani S, Sotoodehnejadnematalahi F, Fateh A, Siadat S D. Evaluation of efficiency of Methods used for extraction of Bifidobacterium bifidum-Derived Extracellular Vesicles: An experimental study. Studies in Medical Sciences 2021; 32 (3) :225-233
URL: http://umj.umsu.ac.ir/article-1-5197-en.html
Ph.D, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran (Corresponding Author) , d.siadat@gmail.com
Abstract:   (2391 Views)
Background & Aims: Bacteria naturally secret nano-scale vesicles containing a wide range of biomolecules, such as proteins, DNA, and RNA. These vesicles are called extracellular vesicles (EVs). EVs play important roles in host-microbiota interactions. For isolating EVs, different methods have been proposed and each method has its advantages and also limitations. Therefore, in the current study, efficacy of two methods used for extraction of EVs was investigated.
Materials & Methods: For this purpose, Bifidobacterium bifidum was cultured in MRS broth under anaerobic conditions. In the first isolation protocol, ultra-centrifugation was used (Ultra-method) and in the second protocol, ultra-centrifugation (Non-Ultra method) was not used. After isolation, protein content was measured by the NanoDrop system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) technique was utilized to compare protein pattern of the EVs. Scanning electron microscopy (SEM) images of the EVs҆ samples were taken and size of the EVs was evaluated by Digimizer software.
Results: The results showed that the EVs isolated by the Ultra-method had significantly higher vesicle-associated protein content compared to those isolated by the Non-Ultra method (3.42 and 0.26 mg/ml, respectively). More and larger EVs (up to 235 nm and with frequent size ranging between 100 – 125 nm) were isolated by the Ultra-method compared to the Non-Ultra method (up to 117 nm and with frequent size ranging between 50–75 nm). Also, protein patterns of the EVs were similar in both methods and protein bands were observed at 25 to 250 KDa in both methods.
Conclusion: Our results showed that ultra-centrifugation method is a more proper method for isolation of B. bifidum-derived EVs and produces a higher amount of EVs with higher protein content and proper sizes. However, further studies are required to confirm our results.
Full-Text [PDF 498 kb]   (970 Downloads)    
Type of Study: Research | Subject: میکروبیولوژی

References
1. Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol 2015;40:97-104. [DOI:10.1016/j.semcdb.2015.02.006] [PMID]
2. Jiang Y, Kong Q, Roland KL, Curtiss R. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int J Med Microbiol 2014;304(3-4):431-43. [DOI:10.1016/j.ijmm.2014.02.006] [PMID] [PMCID]
3. Lee JH, Choi CW, Lee T, Kim SI, Lee JC, Shin JH. Transcription factor sigmaB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes. PLoS One 2013;8(8):e73196. [DOI:10.1371/journal.pone.0073196] [PMID] [PMCID]
4. Liao S, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn SJ, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 2014;196(13):2355-66. [DOI:10.1128/JB.01493-14] [PMID] [PMCID]
5. Olaya-Abril A, Prados-Rosales R, McConnell MJ, Martin-Pena R, Gonzalez-Reyes JA, Jimenez-Munguia I, et al. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae. J Proteomics 2014;106:46-60. [DOI:10.1016/j.jprot.2014.04.023] [PMID]
6. Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A 2010;107(44):19002-7. [DOI:10.1073/pnas.1008843107] [PMID] [PMCID]
7. Schrempf H, Koebsch I, Walter S, Engelhardt H, Meschke H. Extracellular Streptomyces vesicles: amphorae for survival and defence. Microb Biotechnol 2011;4(2):286-99. [DOI:10.1111/j.1751-7915.2011.00251.x] [PMID] [PMCID]
8. Ahmadi Badi S, Moshiri A, Fateh A, Rahimi Jamnani F, Sarshar M, Vaziri F, et al. Microbiota-derived extracellular vesicles as new systemic regulators. Front Microbiol 2017;8:1610. [DOI:10.3389/fmicb.2017.01610] [PMID] [PMCID]
9. Choi SJ, Kim MH, Jeon J, Kim OY, Choi Y, Seo J, et al. Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity. PLoS One 2015;10(9):e0136021. [DOI:10.1371/journal.pone.0136021] [PMID] [PMCID]
10. Raeven RH, Brummelman J, Pennings JL, van der Maas L, Tilstra W, Helm K, et al. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Sci Rep 2016;6:38240. [DOI:10.1038/srep38240] [PMID] [PMCID]
11. Raeven RH, van der Maas L, Tilstra W, Uittenbogaard JP, Bindels TH, Kuipers B, et al. Immunoproteomic Profiling of Bordetella pertussis Outer Membrane Vesicle Vaccine Reveals Broad and Balanced Humoral Immunogenicity. J Proteome Res 2015;14(7):2929-42. [DOI:10.1021/acs.jproteome.5b00258] [PMID]
12. Zariri A, Beskers J, van de Waterbeemd B, Hamstra HJ, Bindels TH, van Riet E, et al. Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response. Infect Immun 2016;84(10):3024-33. [DOI:10.1128/IAI.00635-16] [PMID] [PMCID]
13. McConnell MJ, Rumbo C, Bou G, Pachón J. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii. Vaccine 2011;29(34):5705-10. [DOI:10.1016/j.vaccine.2011.06.001] [PMID]
14. Yang J, Kim EK, McDowell A, Kim YK. Microbe-derived extracellular vesicles as a smart drug delivery system. Transl Clin Pharmacol 2018;26(3):103-10. [DOI:10.12793/tcp.2018.26.3.103] [PMID] [PMCID]
15. Margolles A, Garcia L, Sanchez B, Gueimonde M, de los Reyes-Gavilan CG. Characterisation of a Bifidobacterium strain with acquired resistance to cholate--a preliminary study. Int J Food Microbiol 2003;82(2):191-8. [DOI:10.1016/S0168-1605(02)00261-1]
16. Ruiz L, Delgado S, Ruas-Madiedo P, Margolles A, Sanchez B. Proteinaceous Molecules Mediating Bifidobacterium-Host Interactions. Front Microbiol 2016;7:1193. [DOI:10.3389/fmicb.2016.01193] [PMID] [PMCID]
17. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 2009;75(6):1534-45. [DOI:10.1128/AEM.02216-08] [PMID] [PMCID]
18. Kim JH, Jeun EJ, Hong CP, Kim SH, Jang MS, Lee EJ, et al. Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. J Allergy Clin Immunol 2016;137(2):507-16 e8. [DOI:10.1016/j.jaci.2015.08.016] [PMID]
19. Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, et al. Current methods for the isolation of extracellular vesicles. Biol Chem 2013;394(10):1253-62. [DOI:10.1515/hsz-2013-0141] [PMID] [PMCID]
20. Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 2005;19(22):2645-55. [DOI:10.1101/gad.1299905] [PMID]
21. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int 2018;2018:8545347. [DOI:10.1155/2018/8545347] [PMID] [PMCID]
22. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, et al. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One 2011;6(11):e27958. [DOI:10.1371/journal.pone.0027958] [PMID] [PMCID]
23. Brennan K, Martin K, FitzGerald SP, O'Sullivan J, Wu Y, Blanco A, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 2020;10(1):1039. [DOI:10.1038/s41598-020-57497-7] [PMID] [PMCID]
24. Zhou F, Jiang X, Wang T, Zhang B, Zhao H. Lyciumbarbarum Polysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus. Front Microbiol 2018;9:1034. [DOI:10.3389/fmicb.2018.01034] [PMID] [PMCID]
25. Guo-wei S, Zhe J, Tao Q, He C, Qi M. Effect of ascorbic acid and cysteine hydrochloride on growth of Bifidobacterium Bifidum. Proceedings of the 2012 International Conference on Convergence Computer Technology; 2012. [Google Scholar]
26. Ashrafian F, Shahryari A, Behrouzi A, Moradi HR, Lari A, Hadifar S, et al. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol 2019;10:2155. [DOI:10.3389/fmicb.2019.02155] [PMID] [PMCID]
27. Ahmadi Badi S, Khatami SH, Irani SH, Siadat SD. Induction Effects of Bacteroides fragilis Derived Outer Membrane Vesicles on Toll Like Receptor 2, Toll Like Receptor 4 Genes Expression and Cytokines Concentration in Human Intestinal Epithelial Cells. Cell J 2019;21(1):57-61. [Google Scholar]
28. Rabiei N, Ahmadi Badi S, Ettehad Marvasti F, Nejad Sattari T, Vaziri F, Siadat S. Comparison of two isolation methods for extracellular vesicles from Faecalibacterium prausnitzii A2-165. Vaccine Research 2018;5(1):27-31. [DOI:10.29252/vacres.5.1.27]
29. Sanchez I, Sesena S, Palop L. Identification of lactic acid bacteria from spontaneous fermentation of 'Almagro' eggplants by SDS-PAGE whole cell protein fingerprinting. Int J Food Microbiol 2003;82(2):181-9. [DOI:10.1016/S0168-1605(02)00260-X]
30. Kirk SE, Skepper JN, Donald AM. Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 2009;233(2):205-24. [DOI:10.1111/j.1365-2818.2009.03111.x] [PMID]
31. Masoudi M, Mashreghi M, Goharshadi E, Meshkini A. Multifunctional fluorescent titania nanoparticles: green preparation and applications as antibacterial and cancer theranostic agents. Artif Cells Nanomed Biotechnol 2018;46(sup2):248-59. [DOI:10.1080/21691401.2018.1454932] [PMID]
32. Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: Determining the correct approach (Review). Int J Mol Med 2015;36(1):11-7. [DOI:10.3892/ijmm.2015.2194] [PMID] [PMCID]
33. Foditsch C, Santos TM, Teixeira AG, Pereira RV, Dias JM, Gaeta N, et al. Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PLoS One 2014;9(12):e116465. [DOI:10.1371/journal.pone.0116465] [PMID] [PMCID]
34. Li M, Lee K, Hsu M, Nau G, Mylonakis E, Ramratnam B. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol 2017;17(1):66. [DOI:10.1186/s12866-017-0977-7] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Studies in Medical Sciences

Designed & Developed by : Yektaweb